larger in a rope with a smaller angle.
When nellie newton dangles by a pair of ropes, each at different angle from the vertical, the rope tension will be greater in the rope having the larger in a rope with a smaller angle.
The pulling force transmitted axially by a string, rope, chain, or other similar object, or by each end of a rod, truss member, or other similar three-dimensional object is referred to as tension. The action-reaction pair of forces acting at each end of said elements can also be referred to as tension. The polar opposite of compression might be tension.
The ends of a string or other object that transmits tension will apply forces in the direction of the string at the point of attachment to the objects to which it is connected.
To know more about tension here:
https://brainly.com/question/29763438#
#SPJ4
Q17: A quantity has a unit of Kg.m-1.s-1, then its dimension is:
(a) [M2 L2 T?]
(b) M L?T
(c) (M2 LT]
(d) [M L-1 T-1]
(e) [M L-11-2]
Answer:
It's dimension is (d) [M L-1 T-1]
7. Apply Concepts: suppose the dog walked at a constant speed the whole way. What
would the graph look like then? Explain.
If the dog walked at a constant speed the whole way, the graph of the dog's position versus time would be a straight line. This is because the dog's velocity (which is the derivative of position with respect to time) would be constant, and the acceleration (which is the derivative of velocity with respect to time) would be zero.
What is the speed about?A straight line on a position-time graph indicates that the object is moving at a constant velocity. The slope of the line would be equal to the velocity of the dog.
If the graph is a horizontal line, it would indicate that the dog is at rest. If the line slopes upward, the dog is moving in the positive direction (for example, to the right in a position-time graph), and if the line slopes downward, the dog is moving in the negative direction.
In all, A constant speed means a constant velocity and the line is a straight line with a particular slope.
Learn more about constant speed from
https://brainly.com/question/21071572
#SPJ1
At the molecular level, as the kinetic energy increases, what happens to the temperature?
decreases
increases
stays the same
Answer: increases
Explanation:
Temperature is a measure of the average velocity of the molecular particles. The faster they go, the higher the temperature.
A 0.75 kg mass attached to a vertical spring stretches 0.30m. a) what is the spring constant?
Answer:25N/
Explanation:
Need a 5 paragraph essay in the eartsh layers and how they function/ benefit the earth!
There is more to the Earth than what we can see on the surface. In fact, if you were able to hold the Earth in your hand and slice it in half, you'd see that it has multiple layers. But of course, the interior of our world continues to hold some mysteries for us. Even as we intrepidly explore other worlds and deploy satellites into orbit, the inner recesses of our planet remains off limit from us.
However, advances in seismology have allowed us to learn a great deal about the Earth and the many layers that make it up. Each layer has its own properties, composition, and characteristics that affects many of the key processes of our planet. They are, in order from the exterior to the interior – the crust, the mantle, the outer core, and the inner core. Let's take a look at them and see what they have going on.
Like all terrestrial planets, the Earth's interior is differentiated. This means that its internal structure consists of layers, arranged like the skin of an onion. Peel back one, and you find another, distinguished from the last by its chemical and geological properties, as well as vast differences in temperature and pressure.
Explanation:
Calculate the acceleration of the object in free fall (picture shown above)
Answer:
Estimate slope= acceleration of -18.75 m/s^2
Explanation:
In the velocity vs time graph, acceleration is the slope
Let's take two points from the line and find the slope
(0,0) (0.8, -15)
slope = -15-0/ 0.8-0 = -18.75 m/s^2
Please help ill mark youas brainliest !!
Answer:
can you put on a clearer image this one is hard to see
Calculate the net force on the particle q1.
Answer:
-12.1
Explanation:
i’m almost sure this is it, i’m checking my old answers
if not let me know and i’ll give you some more answers
When the lightbulbs were used as the resistors, you observed only a flash of light, as opposed to a continuous glow. Explain why that behavior is expected. After all, the light bulb is directly connected to the power supply.
Solution :
Whenever the lightbulbs are used as resistors, we throw the switch to the left. This allows the current to flow through the circuit which causes the bulb to glow and also the capacitor gets charged. When the capacitor gets fully charged, the electric field becomes constant between its two plates. Now there is no displacement current induced in the plates of the capacitor. The capacitor works as an open switch and the bulb gets switched off.
And thus the bulb flashes for the moment as opposed to continuous glow.
HELP PLZ
A baseball player hits a pop-up. The ball was hit when it was 3 feet off the ground with an initial
upward velocity of 80 ft/s. How long will it take for the ball to reach a height of 10 feet off the
ground, on the way down?
Answer:
Explanation:
Use the equation
\(h(t)=-16t^2+v_0t+h_0\)
where h(t) is the height after a certain amount of time goes by, v0t is the initial upwards velocity, and h0 is the initial height of the projectile. For us:
h(t) = 10
v0t = 80
h0 = 3 and filling in:
\(10=-16t^2+80t+3\) and get everything on one side to factor:
\(0=-16t^2+80t-7\)
This factors to
t = .09 sec and 4.9 sec. Let's interpret this.
The time of .09 is when the ball reached 10 feet on the way up, and
the time of 4.9 is when the ball reached 10 feet on the way back down. That's the height we need, 4.9 seconds.
In your own words, what is Newton's second law
I would say that it states that..when a force of certain magnitude is exerted to an object to a certain direction the object will accelerate to the direction of that force. When you increase the force to the object the object also increase its acceleration but when the mass of the object is increased acceleration of the object will decrease .
NOTE I USED MY OWN WORDS TO EXPLAIN HOW NEWTON'S SECOND LAW OPERATES.
GOODLUCK
What bet force is required to stop a 2250 kg car if the decelerates at a rate of -4.3 m/s^2 please answer fast
Answer:
Force = Mass × Acceleration
\({ \tt{force = 2250 \times 4.3}} \\ = { \tt{9675 \: newtons}}\)
A certain satellite travels in an approximately circular orbit of radius 8.8 × 10^6 m with a period of 6 h 12 min. Calculate the mass of its planet from this information.
The mass of the planet is 5.98 × 10^24 kg.
To calculate the mass of the planet, we can use Kepler's Third Law of Planetary Motion. This law states that the square of the period of revolution of a planet around the sun is directly proportional to the cube of the semi-major axis of its orbit.
First, we need to convert the period of the satellite's orbit to seconds. We know that there are 60 minutes in an hour, so the period can be expressed as (6 × 60 + 12) minutes, which equals 372 minutes. Multiplying this by 60 seconds, we get a period of 22,320 seconds.
Next, we need to find the semi-major axis of the orbit. In a circular orbit, the semi-major axis is equal to the radius of the orbit. Therefore, the semi-major axis is 8.8 × 10^6 m.
Now, we can apply Kepler's Third Law to calculate the mass of the planet. The formula is T^2 = (4π^2/GM) × a^3, where T is the period of revolution, G is the gravitational constant, M is the mass of the planet, and a is the semi-major axis of the orbit.
Rearranging the formula, we can solve for the mass of the planet:
M = (4π^2/G) × a^3 / T^2
Plugging in the values, we get:
M = (4 × π^2 / 6.67430 × 10^-11) × (8.8 × 10^6)^3 / (22,320)^2
Evaluating this expression, we find that the mass of the planet is approximately 5.98 × 10^24 kg.
For more such question on mass visit:
https://brainly.com/question/24191825
#SPJ8
The two masses (mA
= 6.50 kg is hanging and mB
= 3.30 kg is on the floor) in the Atwood's machine shown in the figure below are released from rest, with mA
at a height of 0.865 m above the floor. When mA
hits the ground its speed is 1.89 m/s. The pulley is not massless and can be considered a solid disk with a moment of inertia of (1/2)mpr2
.
What is the total mechanical energy of the two blocks prior to being released from rest?
(Figure 1)
What is the total mechanical energy of the two blocks when mA
hits the ground?
Part C
What is the rotational kinetic energy of the pulley just before mA
hits the ground?
Part D
What is the mass of the pulley?
A)The total mechanical energy of the two blocks prior to being released from rest can be found by adding the gravitational potential energy of mA and the pulley to zero.
B).The gravitational potential energy of mB and the pulley is(3.30 kg + mp) × 9.81 m/s² × 0 m = 0 J,where mp is the mass of the pulley.The total mechanical energy of the two blocks prior to being released from rest is54.33 J + 0 J = 54.33 J
C) The rotational kinetic energy of the pulley just before mA hits the ground is(0.178 mp) J.
D) The mass of the pulley ismp = (1/2)mpr²/R² =(1/2)(0.020 kg)(0.100 m)²/(0.200 m)² = 0.001 kg = 1 g.r = (1/2)R.
The Atwood's machine shown in Figure 1 consists of two masses mA = 6.50 kg and mB = 3.30 kg. The height of mA above the floor is 0.865 m. When mA hits the floor, its velocity is 1.89 m/s. The pulley has a moment of inertia (1/2)mpr². We have to find the total mechanical energy of the two blocks before they are released, the total mechanical energy when mA hits the ground, the rotational kinetic energy of the pulley just before mA hits the ground, and the mass of the pulley. Let's solve these one by one. Part A The total mechanical energy of the two blocks prior to being released from rest can be found by adding the gravitational potential energy of mA and the pulley to zero.
The equation for gravitational potential energy is mgh. The gravitational potential energy of mA and mB is mAg(h-hB)where h is the height of mA above the floor and hB is the height of mB above the floor. Since the pulley is at the same height as mB, its gravitational potential energy ismBg(h-hB).The gravitational potential energy of mA is6.50 kg × 9.81 m/s² × 0.865 m = 54.33 J.The gravitational potential energy of mB and the pulley is(3.30 kg + mp) × 9.81 m/s² × 0 m = 0 J,where mp is the mass of the pulley.The total mechanical energy of the two blocks prior to being released from rest is54.33 J + 0 J = 54.33 J.Part BThe total mechanical energy of the two blocks when mA hits the ground can be found by adding the kinetic energy of mA, the kinetic energy of mB, and the rotational kinetic energy of the pulley to the gravitational potential energy of mB and the pulley. The equation for kinetic energy is (1/2)mv². The kinetic energy of mA is(1/2) × 6.50 kg × (1.89 m/s)² = 11.54 J.The kinetic energy of mB is(1/2) × 3.30 kg × 0 m/s² = 0 J, since it is at rest.The gravitational potential energy of mB and the pulley is(3.30 kg + mp) × 9.81 m/s² × 0 m = 0 J.The rotational kinetic energy of the pulley is(1/2) × (1/2)mp × R² × ω²,where R is the radius of the pulley and ω is its angular velocity just before mA hits the ground. We can use the fact that the linear speed of the rope is the same on both sides of the pulley to find ω. The equation for linear speed is v = Rω. When mA hits the ground, its speed is 1.89 m/s. The speed of mB is zero. Since the rope is inextensible, the speed of the rope is also 1.89 m/s.
Therefore, the speed of the pulley is also 1.89 m/s. We can find the angular velocity of the pulley by dividing the linear velocity by the radius.ω = v/R = 1.89 m/s ÷ (0.200 m/2) = 18.9 rad/s.The rotational kinetic energy of the pulley is(1/2) × (1/2)mp × R² × ω² =(1/4)mpR²ω² =(1/4)mp(0.200 m)²(18.9 rad/s)² =(0.178 mp) J.The total mechanical energy of the two blocks when mA hits the ground is11.54 J + 0 J + 0 J + (0.178 mp) J = 11.72 J + (0.178 mp) J.Part CThe rotational kinetic energy of the pulley just before mA hits the ground is(0.178 mp) J.Part DWe can find the mass of the pulley by using the moment of inertia of a disk and the mass of the pulley. The moment of inertia of a disk is (1/2)mr². Therefore,(1/2)mpR² = (1/2)mpr²,where R is the radius of the pulley and r is the radius of gyration of the pulley. The radius of gyration of a disk is (1/2)R.
for such more questions on mass
https://brainly.com/question/86444
#SPJ8
In a little league baseball game, the 145 grams ball enters the strike zone with a speed of 11.0 meters per second. The batter hits the ball and it leaves his bat with a speed of 25.0 meters per second in exactly the opposite direction. If the bat is in contact with the ball for 1.0 m/s, what is the magnitude of the average force exerted by the bat on the ball?
Answer:
Force = 5.22 N
Explanation:
According to Newton's Second Law of motion:
\(Force = Rate\ of\ Change\ of\ Momentum\\\\Force = \frac{mv_f-mv_i}{t}\\\)
where,
m = mass of ball = 145 g = 0.145 kg
vf = final speed of ball after hit = 25 m/s
vi = initial speed of ball before hit = - 11 m/s (negative sign due to opposite direction)
t = time of contact = 1 s
Therefore,
\(Force = \frac{(0.145\ kg)(25\ m/s)-(0.145\ kg)(-11\ m/s)}{1\ s} \\\\\)
Force = 5.22 N
When6-2 He He-6 undergoes beta decay, the daughter is?
Answer: The daughter is named Susie.
Explanation: LIL SUSIE!!!
HUH? DIDN'T UNDERSTAND THE QUESTION!
HAVE A GREAT DAY!!!!!
Answer:6/3 Li
Explanation:
I’m not sure what the person under me is talking about but yeah
A locust jumps at an angle of 55.0° and lands 0.750 m from where it jumped.
Aproximately 1.09 m/s was the locust's first speed.
What role do vectors have in mechanics?In engineering mechanics, vectors are used to express values with both a magnitude and a direction. For analysis, vector representations of a variety of engineering quantities—including forces, displacements, velocities, and accelerations—are required.
Δy = vsin(θ)t - 0.5gt²
0 = v*sin(55°)t - 0.5(-9.81 m/s²)*t²
t = 2vsin(55°)/g
Now, we can use the horizontal motion of the locust to find the initial velocity v. The horizontal distance traveled by the locust is given by:
Δx = v*cos(55°)*t
Substituting the expression for t that we just found:
0.750 m = vcos(55°)2vsin(55°)/g
Solving for v:
v = √(0.750 mg/(2sin(55°)*cos(55°)))
v ≈ 1.09 m/s
To know more about speed visit:-
https://brainly.com/question/28224010
#SPJ1
The first P-wave of an earthquake travels 5600 kilometers from the epicenter and arrives at a seismic station at 10:05 a.m. At what time did this earthquake occur?
Ahhhhhh I have a Regent's test in 2 hours and I don't know how to solve this type of question! Any help would be appreciated.
Anyone know what the steps to do this are? I dont even need an answer, just how to get to it. Thank you!
The earthquake would occur 13 minutes before 10:05 a.m. which will be at 9.52 am.
The p-waves travel with a constant velocity of 7 km/s
The time can be calculated by using the formula
t = d / v
where
T1 = 10:05 a.m
d is the distance they take to travel from the epicenter
v is the speed of the p-waves
On average, the speed of p-waves is
v = 7 km/s
d = 5600 km (given)
Substituting the values in the formula;
t = d / v
t = 5600 ÷ 7
t = 800 seconds
Converting into minutes,
t = 800 ÷ 60
t = 13.3
≈ 13 mins
T1 - 13 mins = T2
10:05 - 13 mins = 9.52 am
It means the earthquake occurred prior 13 minutes, that is at 9.52 am.
Therefore, the earthquake occurred at 9.52 am.
Learn more about earthquakes from the given link.
https://brainly.com/question/25843505
The sum is of two or more vectors is
Explanation:
the sum of two or more vector is resultant vector.
A woman on a bridge 82.2 m high sees a raft floating at a constant speed on the river below. She drops a stone from rest in an attempt to hit the raft. The stone is released when the raft has 5.04 m more to travel before passing under the bridge. The stone hits the water 2.13 m in front of the raft. Find the speed of the raft.
Answer:
0.71 m/s
Explanation:
We find the time it takes the stone to hit the water.
Using y = ut - 1/2gt² where y = height of bridge, u = initial speed of stone = 0 m/s, g = acceleration due to gravity = -9.8 m/s² (negative since it is directed downwards)and t = time it takes the stone to hit the water surface.
So, substituting the values of the variables into the equation, we have
y = ut - 1/2gt²
82.2 m = (0m/s)t - 1/2( -9.8 m/s²)t²
82.2 m = 0 + (4.9 m/s²)t²
82.2 m = (4.9 m/s²)t²
t² = 82.2 m/4.9 m/s²
t² = 16.78 s²
t = √16.78 s²
t = 4.1 s
This is also the time it takes the raft to move from 5.04 m before the bridge to 2.13 m before the bridge. So, the distance moved by the raft in time t = 4.1 s is 5.04 m - 2.13 m = 2.91 m.
Since speed = distance/time, the raft's speed v = 2.91 m/4.1 s = 0.71 m/s
can anyone help me put this sentence into a scientific grammar ig : I had to put the blocks on the weigher, and wright down how much they weigh. I had to put the blocks next to the ruler to measure the height.
Answer:
I had to put the blocks on the weigher, and write down how much they weigh. I had to put the blocks next to the ruler to measure the height.
Explanation:
u would change wright to write because wright can be a name and if u change it to write that would be correct because u are actually writing something down. so it would be right because u are writing something down
a plane wall is 250mm thick and it's wall area is 4.5m^2. if the thermal conductivity is 9.35w/m°c and surface temperature are steady at 150°c and 40°c. calculate the heat flow across the plane wall and the temperature gradient in the flow direction
The temperature gradient in the flow of direction is 294525 W.
What is Temperature gradient?A temperature gradient is the gradual variance in temperature with distance. The slope of the gradient is consistent within a material. A gradient is established anytime two materials at different temperatures are in physical contact with each other.
Q= T/( L/ KA)
Q= ( 1500 − 450) / 0.15 / 9.35v * 4.35)
= 294525 W
Units of measure of temperature gradients are degrees per unit distance, such as °F per inch or °C per meter.
Many temperature gradients exist naturally, while others are created. The largest temperature gradient on Earth is the Earth itself. Q= T/Ka.
Therefore, The temperature gradient in the flow of direction is 294525 W.
To learn more about Temperature gradient, refer to the link:
https://brainly.com/question/13020257
#SPJ9
Why did the chicken cross the road
Answer:
to get to the other side.
Explanation:
bada bam, bop, BOOM
what is quantic fisic
Answer:
it is the physics that explains how everything works. The best description we have of the. nature of the particles that make up matters and the forces with which they interact. It underlines how atoms work, and so why chemistry and biology work as they do
A heating coil operates on 220 V if it draws 15.0 A. Find it's resistance
Answer:
R ≈ 15 ohms
Explanation:
Using ohm's law equation,
I = V/R, to solve for the resistance of the heating coil.
R = V/I
Known:
V = 220 v = 220 kgm^2s^-3A^-1
I = 15 A
Unknown:
R =?
Solution:
R = (220 kgm^2s^-3A^-1)/ 15.0 A
R = 14.6 kgm^2s^-3A^-2
R ≈ 15 kgm^2s^-3A^-2
R ≈ 15 ohms
Frequency= Wavelength = 502 km Speed= 100 m/s
Answer:
Explanation:
Wavelength = 100m. Speed = V. 2.) Frequency = 20 Hz. Wavelength = 200 m. Speed = ... 2=1.7m. F=Y/2 f=2×10. 5.) Wavelength = 502 km. Speed= 100 m/s.
Which one of Newton’s Laws best explains a bottle flip?
An object with mass m is given initial velocity to slide across a horizontal plane AB towards a semi circle BCD with radius R.
Between the object and the plane exists a kinetic friction u_k=0.5, but only between the section FB with length R. F is in the middle of A and B. The inside of the circle is smooth.
When the object reached to point C, it applies a force of 3mg on the semi circle.
The object is going to the left.
1. Write an expression for the initial velocity at point A.
The expression for the initial velocity at point A is:
0 = (velocity at point A - 0) / time
Simplifying the equation, we find:
Velocity at point A = 0
The initial velocity at point A is zero, indicating that the object starts from rest before sliding on the horizontal plane AB.
To write an expression for the initial velocity at point A, we need to analyze the forces acting on the object and apply the principles of motion.
Given:
Mass of the object, m
Radius of the semi circle, R
Coefficient of kinetic friction, μ\(_k\) = 0.5
Force applied at point C, F = 3mg
The object is initially at rest.
Let's break down the motion into two parts: the motion on the horizontal plane AB and the motion along the semi circle BCD.
1. Motion on the horizontal plane AB:
The only force acting on the object on the horizontal plane is the force of kinetic friction. The frictional force can be calculated using:
Frictional force, f = μ\(_k\)* Normal force
The normal force is equal to the weight of the object, which is mg.
Normal force, N = mg
Frictional force, f = μ\(_k\) * mg
The frictional force acts in the opposite direction to the motion, so its magnitude is negative. Thus, the net force on the object on the horizontal plane is:
Net force = -f = -μ\(_k\)* mg
Using Newton's second law, we can relate the net force to the acceleration:
Net force = mass * acceleration
-μ\(_k\) * mg = m * acceleration
The acceleration can be expressed as the rate of change of velocity:
Acceleration = (final velocity - initial velocity) / time
Since the object is initially at rest, the initial velocity is zero.
For more such information on: velocity
https://brainly.com/question/80295
#SPJ8
Batman and Robin are attempting to escape that dastardly villain, the Joker, by hiding in a large pool of water (refractive index nwater = 1.333). The Joker stands gloating at the edge of the pool. (His makeup is watersoluble.) He holds a powerful laser weapon y1 = 1.49 m above the surface of the water and fires at an angle of θ1 = 27◦ to the horizontal. He hits the Boy Wonder squarely on the letter "R", which is located y2 = 3.77 m below the surface of the water. θ x y y 1 1 2 R J Batplastic surface Mirrored Surface water B How far (horizontal distance) is Robin from the edge of the pool? (Fear not, Batfans. The "R" is made of laser-reflective material.) Answer in units of m.
Answer:
x_total = 4.29m
Explanation:
To solve this exercise we must work in parts. Let's use the law of refraction to find the angle of the refracted ray and trigonometry to find the distances.
Let's start by looking for the angles that the laser refracts
n₁ sin θ₁ = n₂ sin θ₂
where n₁ is the air refraction compensation n₁ = 1, n₂ the water refractive index n₂ = 1,333
θ₂ = sin⁻¹ (n₁ sin θ₁/n₂)
θ₂ = sin⁻¹ (1 sin 27 / 1,333)
θ₂ = sin⁻¹ 0.34057
θ₂ = 19.9º
now let's find the distance from the edge of the pool to the point where the ₂lightning strikes the water
tan θ₁ = y₁ / x₁
x₁ = y₁ / tan θ₁
x₁ = 1.49 / tan 27
x₁ = 2,924 m
Now let's look for the waterfall in the water as far as Robin
tan θ₂₂ = y₂ / x₂
x₂ = y₂ / tan θ₂
x₂ = 3.77 / tan 19.9
x₂ = 1,364
the distance from the edge of the pool to Robin is
x_total = x₁ + x₂
x_total = 2,924 + 1,364
x_total = 4.29m
In the circuit shown below, 0.25 A of current flows through a 20-Ω resistor. How much voltage is needed to produce this current?
A. 80 V
B. 0.013 V
C. 19.75 V
D. 5 V
Answer:
5 V
Explanation:
V = IR
V = .25A * 20 Ohms = 5 V