The distributions selected should represent the underlying pool of values expected to occur. Hence, the correct answer is: a.
When determining which probability distributions to employ in an R simulation model, it is important to consider the characteristics and properties of the data or variables being modeled.
The selected distributions should align with the underlying pool of values expected to occur in the real-world scenario being simulated.
Choosing appropriate probability distributions involves understanding the nature of the data and considering factors such as the data's shape, range, and known characteristics.
For example, if the data is continuous and follows a normal distribution, using a normal distribution in the simulation model would be appropriate. Similarly, if the data represents counts or discrete events, a Poisson or binomial distribution might be suitable.
Option b, generating thousands of samples and comparing resulting histograms, can be a helpful exploratory approach to visually inspect the data and evaluate its fit to different distributions.
However, it should be used as an aid in the selection process and not as the sole criterion.
Option c, using R functions to fit any distribution found right, may not be the most suitable approach.
While R provides functions to fit various distributions, blindly fitting any distribution without considering the nature of the data may result in incorrect modeling.
Option d, solving the deterministic model repeatedly and using analytic tools for distribution fitting, can be an alternative approach if a deterministic model is available.
Analytic Solver Platform (ASP) or similar tools can help fit probability distributions to the observed data, but this method is more applicable when dealing with deterministic models rather than simulation models.
Overall, option a is the most appropriate approach, where the selection of probability distributions is based on the understanding of the data and its expected characteristics.
To know more about distributions refer here:
https://brainly.com/question/29664127#
#SPJ11
Let triangle ABC be a right triangle, and let H be the point on the side AB so that CH is perpendicular to AB.
Prove that (x+h)^2 + (y+h)^2 = (a+b)^2
(I would like a detailed answer)
I need help finding the scale factor and if the triangle is similar or not ? Please and thank you
The triangles are not similar triangles
How to determine if the triangles are similarFrom the question, we have the following parameters that can be used in our computation:
The triangles
The scale factor of the triangles is calculated as
Scale factor = DIivsion of corresponding sides
Using the above as a guide, we have the following:
Scale factor = (107+25)/25 = 88/16
Evaluate
Scale factor = 5.28 = 5.5
The above is false
Hence, the triangles are not similar
Read more about simular triangles at
https://brainly.com/question/14285697
#SPJ1
The 12th term of the arithmetic sequence is 10.5. The 18th term of this sequence is 13.5. Find the common difference and the first term
Answer:
common difference is 0.5
first term is 5
Step-by-step explanation:
use the formula for the nth term of an ap Tn=a+(n-1)d
T12=10.5
T18=13.5
therefore come up with two equations
T12=a+(12-1)d
10.5=a+11d(1st equation)
T18=a+(18-1)d
13.5=a+17d(2nd equation)
then solve both as a simultaneous equation
a+11d=10.5
a+17d=13.5
-6d/-6=-3/-6
d=0.5
use one of the equations to find the first term
a+11(0.5)=10.5
a+5.5=10.5
a=10.5-5.5
a=5
I hope this helps
please mark as brainliest
Find the slope of every line that is parallel to
the line on the graph
Enter the correct answer.
Answer:
\(m = \frac{2 - 1}{6 - 0} = \frac{1}{6} \)
An article described an experiment in which observations on various characteristics were made using minichambers of three different types: (1) cooler (PVC frames covered with shade cloth), (2) control (PVC frames only), and (3) warmer (PVC frames covered with plastic). One of the article's authors kindly supplied the accompanying data on the difference between air and soil temperatures (°C).
Cooler Control Warmer
1.59 1.92 2.57
1.43 2.00 2.60
1.88 2.19 1.93
1.26 1.12 1.58
1.91 1.78 2.30
1.86 1.84 0.84
1.90 2.45 2.65
1.57 2.03 0.09
1.79 1.52 2.74
1.72 0.49 2.53
2.41 1.90 2.13
2.34 2.86
0.78 2.31
1.34 1.91
1.76 (a)
Compare measures of center for the three different samples.
Cooler
Control
Warmer
(b)
Calculate the standard deviations for the three different samples. (Round your answers to three decimal places.)
Cooler s = 4 Control s = 5 Warmer s = 6
Interpret and compare the standard deviations for the three different samples.
We see from the standard deviations that variability increases when the conditions of of the mini-chambers transitions from the cooler to the control and decreases when the conditions transition from the control to warmer. We see from the standard deviations that variability increases as the conditions of the minichambers transition from warmer to cooler. We see from the standard deviations that variability increases as the conditions of the minichambers transition from cooler to warmer. We see from the standard deviations that there is no difference in variability between the three conditions. We see from the standard deviations that variability decreases as the conditions of the minichambers transition from cooler to warmer.
(c)
Do the fourth spreads for the three samples convey the same message as do the standard deviations about relative variability?
Yes, The fourth spreads do communicate the same message as the standard deviations did.
No, The fourth spreads do not communicate the same message as the standard deviations did.
a) Mean for all categories are the following: Cooler = 1.709 ; Control = 1.754 ; Warmer = 2.077.
b) Standard Deviations for all categories are Cooler = 0.393 ; Control = 0.526 ; Warmer = 0.776
Comparing the standard deviations of different samples we conclude that the variability increases as the conditions of minichambers transitions from coller to warmer.
c) Yes, fourth spreads for the three samples convey the same message as do the standard deviations about relative variability.
We have experimental observations data on various characteristics were made using minichambers of three different types: (1) cooler (PVC frames covered with shade cloth), (2) control (PVC frames only), and (3) warmer (PVC frames covered with plastic) and present in above figure. We have to determine the mean and standard deviations for three samples.
a) Mean of sample data is the average of a data set, calculated by adding all numbers together and then dividing the resultant by the number of numbers. See the above figures,
In case of coolernumber of observations = 15
Sum of observations = 25.59
So, mean = 25.59/15 = 1.709
In case of Controlnumber of observations = 11
Sum of observations = 19.26
So, mean = 19.26/11 = 1.754
In case of warmernumber of observations = 14
Sum of observations = 29.09
So, mean = 29.09/14 = 2.077
(b) The standard deviation (or σ) is a measure of how varies the data is in relation to the mean.
σ = √(∑(Xi - mean )²/N
In case of coolerStandard deviations, σ = √2.2496/15
= 0.393
In case of controlStandard deviations, σ = √2.8723/11
= 0.526
In case of WarmerStandard deviations, σ = √8.0543/14
= 0.776
After interpretation and comparing the standard deviations data, we see that variability increases as the conditions of minichambers transitions from coller to warmer.
c) Yes, fourth spreads communicate the same message as standard deviations.
For more information about Standard deviations, visit :
https://brainly.com/question/24298037
#SPJ4
Complete question:
An article described an experiment in which observations on various characteristics were made using minichambers of three different types: (1) cooler (PVC frames covered with shade cloth), (2) control (PVC frames only), and (3) warmer (PVC frames covered with plastic). One of the article's authors kindly supplied the accompanying data on the difference between air and soil temperatures (°C).
Cooler Control Warmer
1.59 1.92 2.57
1.43 2.00 2.60
1.88 2.19 1.93
1.26 1.12 1.58
1.91 1.78 2.30
1.86 1.84 0.84
1.90 2.45 2.65
1.57 2.03 0.09
1.79 1.52 2.74
1.72 0.49 2.53
2.41 1.90 2.13
2.34 2.86
0.78 2.31
1.34 1.91
1.76
(a) Compare measures of center for the three different samples.
Cooler = __
Control = __
Warmer= ___
(b)Calculate the standard deviations for the three different samples. (Round your answers to three decimal places.)
Cooler s = ___, Control s = __, Warmer s = ___
Interpret and compare the standard deviations for the three different samples.
i) We see from the standard deviations that variability increases when the conditions of of the mini-chambers transitions from the cooler to the control and decreases when the conditions transition from the control to warmer.
ii) We see from the standard deviations that variability increases as the conditions of the minichambers transition from warmer to cooler. iii) We see from the standard deviations that variability increases as the conditions of the minichambers transition from cooler to warmer. iv) We see from the standard deviations that there is no difference in variability between the three conditions. We see from the standard deviations that variability decreases as the conditions of the minichambers transition from cooler to warmer.
(c) Do the fourth spreads for the three samples convey the same message as do the standard deviations about relative variability?
Yes, The fourth spreads do communicate the same message as the standard deviations did.
No, The fourth spreads do not communicate the same message as the standard deviations did.
What is the missing lenght of X and Y?
Answer:
D. x = 2, y = 2
6.
Given that h:x→+2r-3 is a mapping
defined on the set A=(-1,0,. 1,2), find
the range of h.
The range of h include the following: {-4, -3, 0, 5}.
What is a range?In Mathematics and Geometry, a range is the set of all real numbers that connects with the elements of a domain.
Based on the information provided about the quadratic function, the range can be determined as follows:
h(x) = x² + 2x - 3
h(x) = -1² + 2(-1) - 3
h(x) = -4
h(x) = x² + 2x - 3
h(x) = 0² + 2(0) - 3
h(x) = -3
h(x) = x² + 2x - 3
h(x) = 1² + 2(1) - 3
h(x) = 0
h(x) = x² + 2x - 3
h(x) = 2² + 2(2) - 3
h(x) = 5
Therefore, the range can be rewritten as {-4, -3, 0, 5}.
Read more on range here: brainly.com/question/10684895
#SPJ1
Historically, the members of the chess club have had an average height of 5′ 6′′ with a standard deviation of 2". What is the probability of a player being between 5′ 2′′ and 5' 6"? (Submit your answer as a whole number. For example if you calculate 0.653 (or 65.3% ), enter 65. )
The probability of approximately 48% that a player will have a height between 5'2" and 5'6".
To calculate the probability of a player being between 5'2" and 5'6" given that historically, the members of the chess club have had an average height of 5'6" with a standard deviation of 2", we can use the standard normal distribution.
First, we need to convert the heights to z-scores using the formula:
z = (x - μ) / σ
where x is the height we want to find the probability for, μ is the mean height, and σ is the standard deviation.
For 5'2":
z = (62 - 66) / 2 = -2
For 5'6":
z = (66 - 66) / 2 = 0
Next, we can use a standard normal distribution table or calculator to find the area under the curve between these two z-scores.
Using a standard normal distribution table, we can find that the area to the left of z = -2 is 0.0228 and the area to the left of z = 0 is 0.5. Therefore, the area between z = -2 and z = 0 is:
0.5 - 0.0228 = 0.4772
Multiplying this by 100 gives us a probability of approximately 48% that a player will have a height between 5'2" and 5'6".
To know more about probability refer here:
https://brainly.com/question/11034287#
#SPJ11
I can’t find the answer
A water ballon is launched straight up. The balloons flight is modeled by the function h(t)=16t^2+192t
Answer:Step by Step Solution
More Icon
Rearrange:
Rearrange the equation by subtracting what is to the right of the equal sign from both sides of the equation :
h*(t)-(16*t^2+192*t)=0
STEP
1
:
Equation at the end of step 1
ht - (24t2 + 192t) = 0
STEP
2
:
STEP
3
:
Pulling out like terms
3.1 Pull out like factors :
ht - 16t2 - 192t = t • (h - 16t - 192)
Equation at the end of step
3
:
t • (h - 16t - 192) = 0
STEP
4
:
Theory - Roots of a product
4.1 A product of several terms equals zero.
When a product of two or more terms equals zero, then at least one of the terms must be zero.
We shall now solve each term = 0 separately
In other words, we are going to solve as many equations as there are terms in the product
Any solution of term = 0 solves product = 0 as well.
Solving a Single Variable Equation:
4.2 Solve : t = 0
Solution is t = 0
Equation of a Straight Line
4.3 Solve h-16t-192 = 0
Tiger recognizes that we have here an equation of a straight line. Such an equation is usually written y=mx+b ("y=mx+c" in the UK).
"y=mx+b" is the formula of a straight line drawn on Cartesian coordinate system in which "y" is the vertical axis and "x" the horizontal axis.
In this formula :
y tells us how far up the line goes
x tells us how far along
m is the Slope or Gradient i.e. how steep the line is
b is the Y-intercept i.e. where the line crosses the Y axis
The X and Y intercepts and the Slope are called the line properties. We shall now graph the line h-16t-192 = 0 and calculate its properties
Graph of a Straight Line :
Calculate the Y-Intercept :
Notice that when h = 0 the value of t is 12/-1 so this line "cuts" the t axis at t=-12.00000
t-intercept = 192/-16 = 12/-1 = -12.00000
Calculate the X-Intercept :
When t = 0 the value of h is 192/1 Our line therefore "cuts" the h axis at h=192.00000
h-intercept = 192/1 = 192.00000
Calculate the Slope :
Slope is defined as the change in t divided by the change in h. We note that for h=0, the value of t is -12.000 and for h=2.000, the value of t is -11.875. So, for a change of 2.000 in h (The change in h is sometimes referred to as "RUN") we get a change of -11.875 - (-12.000) = 0.125 in t. (The change in t is sometimes referred to as "RISE" and the Slope is m = RISE / RUN)
Slope = 0.125/2.000 = 0.062
Geometric figure: Straight Line
Slope = 0.125/2.000 = 0.062
h-intercept = 192/1 = 192.00000
t-intercept = 192/-16 = 12/-1 = -12.00000
t = 0
Step-by-step explanation:
use the distributive property to simplify (b+13-m) (5)
Answer:
5b-5m+65
Step-by-step explanation:
Find the mean of 1.8,1.7,1.3,1.1,1.2,1.6,1.8
Answer:
1.5
Step-by-step explanation:
To find the mean, we must add all of our terms, and then divide by the number of terms.
\(1.8+1.7+1.3+1.1+1.2+1.6+1.8\)
Solve:
\(1.8+1.7+1.3+1.1+1.2+1.6+1.8=10.5\)
Since we have seven terms, we must divide our total (\(10.5\)), by seven.
\(10.5\) ÷ \(7\)
Solve:
\(10.5\) ÷ \(7=1.5\)
Therefore, the mean is \(1.5\)
Answer:
1.5
Step-by-step explanation:
mean=sum of the terms/no of terms
mean= 1.8+1.7+1.3+1.1+1.2+1.6+1.8 /7
mean=10.5/7
to remove the decimal point, multiply 10 in both numerator and denominator since there is one digit after the decimal point in 10.5
mean=10.5×10/7×10
mean=105/70
mean=3/2
mean=1.5
hope it helps you!
Define a relation ~ on R' by stating that (a, b) ~ (c, d) if and only if a3+ b' transitive but not symmetric.
A relation ~ on R' is defined as a relation where (a,b) ~ (c,d) if and only if a3+b3=c3+d3. This relation is transitive but not symmetric.
Transitivity of the relation states that if (a, b) ~ (c,d) and (c, d) ~ (e, f) then (a, b) ~ (e, f). This means that if a3+b3=c3+d3 and c3+d3=e3+f3 then a3+b3=e3+f3, thus, the relation is transitive.
Symmetry of the relation means that if (a, b) ~ (c, d) then (c, d) ~ (a, b). This, however, does not hold in this relation since it is possible for a3+b3=c3+d3 and yet c3+d3≠a3+b3. For example, (1,2) ~ (8,4), this is true since 13+23=83+43, however, this does not mean that (8,4) ~ (1,2) since 83+43≠13+23. Therefore, this relation is not symmetric.
know more about symmetric here
https://brainly.com/question/31184447#
#SPJ11
find the area and perimeter of that triangle
Step-by-step explanation:
\(A = \frac{1}{2}(b*h)\)
\(A=\frac{1}{2} (14*5)\)
\(A=\frac{1}{2} (70)\)
A = 35
\(P = s+s+s\)
\(P=12+14+6\)
P = 32
there are 366 first grade students in park elementary school if there are 28 more girls than boys how many girls are there ?
Answer:
Step-by-step explanation:
Total no. of children = 366
let the number of boys be x
and the no. of girls be x + 28
According to the question,
x + x + 28 = 366
2x + 28 = 366
2x = 366 - 28
2x = 338
x = 338 / 2
x = 169
So the no. of boys = x = 169
and the no. of girls = x + 28 = 169 + 28 = 197
( you can also recheck it by adding the no. of boys and the no. of girls
that is, 169 + 197 = 366 which equal to the total no. of children )
Hope this helps
plz mark as brainliest!!!!!!
W dwudziestopięcioosobowej klasie VI b chłopcy stanowią 60% wszystkich uczniów. 25% tych chłopców lubi jeździć na rolkach. ilu chłopców z klasy VI b lubi jeździć na rolkach?
Answer:
pleaaase in english i can mot understand
i have yet to understand this subject
the answer is -3/2 and -11/2
1. Given triangle QRS ≈ triangle TUV, line QS = 4v + 5, and line TV = 5v - 8, find the length of QS and TV.
2. Given triangle ABC ≈ triangle PQR, MangleB = 2v + 1, and MangleQ = 8v - 5, find MangleB and MangleQ.
Applying the definition of congruent triangles:
1. QS = 57 units; TV = 57 units
2. m∠B = 3°; m∠Q = 3°
What are Congruent Triangles?The triangles that are congruent to each other have corresponding parts that are congruent, that is their corresponding sides and angles are equal to each other.
1. Given that triangles QRS and TUV are congruent triangles, therefore:
QS = TV [corresponding congruent sides]
QS = 4v + 5
TV = 5v - 8
Therefore:
4v + 5 = 5v - 8
4v - 5v = -5 - 8
-v = -13
v = 13
QS = 4v + 5 = 4(13) + 5 = 57 units
TV = 5v - 8 = 5(13) - 8 = 57 units
2. Given that triangles ABC and PQR are congruent, therefore:
m∠B = m∠Q
m∠B = 2v + 1
m∠Q = 8v - 5
Therefore:
2v + 1 = 8v - 5
2v - 8v = -1 - 5
-6v = -6
v = -6/-6
v = 1
m∠B = 2v + 1 = 2(1) + 1 = 3°
m∠Q = 8v - 5 = 8(1) - 5 = 3°
Learn more about congruent triangles on:
https://brainly.com/question/1675117
#SPJ1
In a right triangle, cosine a = 0.352 and sine a = 0.936. what is the approximate value of tangent a? 0.329 0.376 1.288 2.659
The value of tangent a in the right triangle in which , cosine a = 0.352 and sine a = 0.936 is 2.659.
What are the trigonometric ratios?Trigonometric ratios for a right angled triangle are from the perspective of a particular non-right angle. The value of tangent of angle is equal to the ratio of sine of that angle to the cosine of that angle.
\(\tan\theta=\dfrac{\sin\theta}{\cos\theta}\)
Here, θ is the angle.
The value of angle given in the problem are,
Cosine a = 0.352 Sine a = 0.936.Put these values in the above fromula as,
\(\tan (a)=\dfrac{\sin(a)}{\cos(a)}\\\tan (a)=\dfrac{0.936}{0.352}\\\tan(a)=2.659\)
Hence, the value of tangent a in the right triangle in which , cosine a = 0.352 and sine a = 0.936 is 2.659.
Learn more about the trigonometric ratios here;
https://brainly.com/question/24349828
Answer:
D(2.659)
Step-by-step explanation:
got it right on edg
This is for my little brother
Answer:
9 1/3
Step-by-step explanation:
Pls, choose me as brainliest!
What are the year-2 CPI and the rate of inflation from year 1 to year 2 for a basket of goods that costs $25.00 in year 1 and 25.50 in year 2?
The year-2 CPI is 102, and the rate of inflation from year 1 to year 2 is 2%.
To calculate the rate of inflation and the Consumer Price Index (CPI) change from year 1 to year 2, we need to follow these steps:
Step 1: Calculate the inflation rate:
Inflation Rate = (Year 2 CPI - Year 1 CPI) / Year 1 CPI
Step 2: Calculate the Year 2 CPI:
Year 2 CPI = (Year 2 Basket Price / Year 1 Basket Price) * 100
Let's calculate the values:
Year 1 Basket Price = $25.00
Year 2 Basket Price = $25.50
Step 1: Calculate the inflation rate:
Inflation Rate = ($25.50 - $25.00) / $25.00
Inflation Rate = $0.50 / $25.00
Inflation Rate = 0.02 or 2%
Step 2: Calculate the Year 2 CPI:
Year 2 CPI = ($25.50 / $25.00) * 100
Year 2 CPI = 1.02 * 100
Year 2 CPI = 102
Therefore, the year-2 CPI is 102, and the rate of inflation from year 1 to year 2 is 2%.
For such more questions on CPI and Inflation Calculation
https://brainly.com/question/31995570
#SPJ8
A school is arranging a field trip to the zoo. The school spends 538.92 dollars on passes for 33 students and 3 teachers. The school also spends 290.07 dollars on lunch for just the students. How much money was spent on a pass and lunch for each student?
1 -1 0 1 Let A 1 11 C? Explain. Construct a 4x2 matrix D, using only 1 and 0 as entries, such that AD I2. Is it possible that CA I4 for some 4 x 2 matrix
To construct a 4x2 matrix D such that AD=I2, we can use the following matrix: D = [0 0 1 0; 0 0 0 1]. It is not possible for CA to be equal to 4 or 14 for any 4x2 matrix C.
Constructing a matrix D such that AD=I2
Let A = -1 be a 1x1 matrix. We want to construct a 4x2 matrix D such that their product AD is equal to the 2x2 identity matrix I2. We can use the following matrix for D:
D = [0 0 1 0; 0 0 0 1; 1 0 0 0; 0 1 0 0]
To verify that AD=I2, we can compute the matrix product:
AD = [-1 0 0 0; 0 -1 0 0] [0 0 1 0; 0 0 0 1; 1 0 0 0; 0 1 0 0]
= [0 0 -1 0; 0 0 0 -1]
= -I2
Note that D only uses 1 and 0 as entries.
Now, it is not possible for CA to be equal to 4 or 14 for any 4x2 matrix C. To see why, we can use the definition of matrix multiplication. Let C be a general 4x2 matrix:
C = [c11 c12; c21 c22; c31 c32; c41 c42]
Then, we can compute CA as:
CA = [-1 0; 0 -1] [c11 c12; c21 c22; c31 c32; c41 c42]
= [-c11 -c12; -c21 -c22; -c31 -c32; -c41 -c42]
Since CA is a 4x2 matrix and 4 is a scalar, it is not possible for CA to be equal to 4. Similarly, since the entries of C are only 0 or 1, it is not possible for CA to be equal to 14.
Therefore, there is no matrix C that satisfies the equations CA=4 or CA=14.
To know more about matrix here:
https://brainly.com/question/28180105#
#SPJ11
I WILL GIVE BRAINLIEST Identify the coefficients in the following expression.
3x – 5y – z + 13
A. 3, -5, -1
B. 3, -5
C. 3, 5, 13
D. 3, 5, 1, 14
SHOW YOUR WORK PLZSSSSSSS
Step-by-step explanation:
the coefficients are the whole numbers accompanied by the variable. would be: 3, 5, 1, 13
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. A random sample of 200 men aged between 20 and 60 was selected from a certain city. The linear correlation coefficient between income and blood pressure was found to be r = 0.807. What does this imply? Does this suggest that if a man gets a salary raise his blood pressure is likely to rise? Why or why not? What are likely lurking variables?
____
The linear correlation coefficient of r=0.807 indicates a strong positive linear relationship between income and blood pressure in the sample of 200 men aged between 20 and 60.
The income increases, blood pressure tends to increase as well in the sample.
No, this does not necessarily suggest that if a man gets a salary raise, his blood pressure is likely to rise. Correlation does not imply causation, so we cannot conclude that a change in income causes a change in blood pressure.
There may be other factors that influence both income and blood pressure, such as stress, diet, physical activity, or genetic factors.
Lurking variables are unobserved variables that may affect the relationship between income and blood pressure.
Some possible lurking variables in this scenario include age, race, education, occupation, lifestyle factors, family history of hypertension, and underlying health conditions.
These variables may confound the relationship between income and blood pressure, making it difficult to establish a causal relationship.
For similar question on linear correlation:
https://brainly.com/question/14050790
#SPJ11
Y=square root of x-1
Answer:
Find the domain for
y
=
√
x
−
1
so that a list of
x
values can be picked to find a list of points, which will help graphing the radical.
Tap for more steps...
Interval Notation:
[
1
,
∞
)
Set-Builder Notation:
{
x
|
x
≥
1
}
To find the radical expression end point, substitute the
x
value
1
, which is the least value in the domain, into
f
(
x
)
=
√
x
−
1
.
Tap for more steps...
0
The radical expression end point is
(
1
,
0
)
.
(
1
,
0
)
Select a few
x
values from the domain. It would be more useful to select the values so that they are next to the
x
value of the radical expression end point.
Tap for more steps...
x
y
1
0
2
1
3
1.41
image of graph
Step-by-step explanation:
Simplify: 2xy * sqrt(x ^ 3 * y) * 3 * y * sqrt(xy)
Find the value of z.
Which of the following best describes net worth?
A person's net worth is the difference between a person's assets and liabilities. Therefore, the correct option is C.
Net worth is calculated by subtracting the total amount of a person's liabilities (debts and obligations) from the total value of their assets (everything they own). It represents the value of an individual's assets after all debts and obligations have been paid off. This gives a clear picture of an individual's financial position, as it shows their overall wealth after accounting for any outstanding debts.
A person's liability (option A) represents what they owe to others, while the difference between a person's income and expenses (option B) is their savings or deficit for a given period, and it does not necessarily reflect their overall net worth. The value of a person's home (option D) is just one asset that contributes to their net worth, but it does not account for all of their assets and liabilities.
Hence, the statement which best describes a person's net worth is option C: the difference between a person's assets and a person's liabilities.
Note: The question is incomplete. The complete question probably is: Which of the following best describes a person's net worth? A) a person's liability B) difference between a person's income and a person's expenses C) difference between a person's assets and a person's liabilities D) The value of a person's home.
Learn more about Net worth:
https://brainly.com/question/27613981
#SPJ11
BRAINLIST!!
The number of pages read by eight different students during a one hour reading class was used to create the box plot shown above. Which of the sets of numbers below matches the given box plot?
Answer:
C. Pages Read in an Hour: 10, 14, 16, 16, 18, 19, 21, 25
Step-by-step explanation: Got it on my study island question.