Answer:
uh 36
Step-by-step explanation:
did you really need this answer or did u just felt like giving away points
Write down null hypothesis and alternative hypothesis in symbols
and words, respectively, for the following example:
It was reported that the mean GPA of students in a university is
5.0 (out of 7.0).
The null hypothesis is found as: H0: μ = 5.0
The alternative hypothesis is found as: Ha: μ ≠ 5.0
The null hypothesis, denoted as H0, states that there is no significant difference between the mean GPA of students in the university and the reported value of 5.0 (out of 7.0).
In symbols, the null hypothesis can be represented as:
H0: μ = 5.0
The alternative hypothesis, denoted as Ha, states that there is a significant difference between the mean GPA of students in the university and the reported value of 5.0 (out of 7.0).
In words, the alternative hypothesis can be stated as:
Ha: μ ≠ 5.0
Where μ represents the population mean GPA. The alternative hypothesis indicates that there is a difference, either higher or lower, between the mean GPA of students in the university and the reported value.
Know more about the null hypothesis
https://brainly.com/question/4436370
#SPJ11
Multiply 4/17 by a fraction smaller than 1. Which of the following is correct?
Answer:
since 4/17 is smaller than 1, multiplying 4/17 with a. fraction smaller than 1 will yield a number still smaller than 4/17. This will still be smaller than 4/16. Hence the correct answer is A.
Step-by-step explanation:
hope i helped and have a wonderful day
Perform the indicated operation.
a/7 x b/2
a) ab
b) 9ab/14
c) ab/14
Answer:
c) ab/14
Step-by-step explanation:
\(\frac{a}{7} * \frac{b}{2} =\frac{ab}{14}\)
multipling fractions rule is to multiply nominators and denominators separately
Benveen which to consecutive whole numbers does 37 lie? Fill out the sentence
below to justify your answer and use your mouse to drag 37 to an approximately
correct location on the number line.
Consecutive whole numbers are a sequence of integers that follow each other in order, with a difference of 1 between each number. For example, 1, 2, 3, 4, and 5 are five consecutive whole numbers.
To find the consecutive whole numbers that 37 lies between, we can divide 37 by 2 and round down to the nearest whole number. This gives us 18.5, which means that 37 is closer to the number 38 than it is to the number 36. Therefore, the two consecutive whole numbers that 37 lies between are 36 and 38.
We can visualize this on a number line by placing the number 37 between 36 and 38. To do this, we can use our mouse to drag the number 37 to an approximately correct location on the number line. This helps us see that 37 is closer to 38 than it is to 36, which confirms our answer that 37 lies between the consecutive whole numbers 36 and 38.
In summary, to find the two consecutive whole numbers that 37 lies between, we divide 37 by 2 and round down to get 18.5. This tells us that 37 is closer to 38 than it is to 36, so the two consecutive whole numbers that 37 lies between are 36 and 38. We can confirm this by visualizing it on a number line.
To know more about consecutive whole numbers visit:
https://brainly.com/question/18958157
#SPJ11
If my score goes up 20,000 a day how long will it take me to reach 2,000,000
Answer:
It would take 100 days
Step-by-step explanation:
2,000,000 divided by 20,000 equals 100
So it would take 100 days
For the graph: f(x) = log₂ x There is an ordered pair at (?, 1)
To find the ordered pair (?, 1) on the graph of the function f(x) = log₂ x, we can substitute y = 1 into the equation and solve for x.
Starting with the equation f(x) = log₂ x, we have:
1 = log₂ x
To rewrite this equation in exponential form, we have:
2¹ = x
Simplifying, we find:
2 = x
Therefore, the ordered pair on the graph is (2, 1), where x = 2 and y = 1.
This means that when x is equal to 2, the value of the function f(x) is equal to 1. In other words, the point (2, 1) lies on the graph of f(x) = log₂ x.
The logarithmic function f(x) = log₂ x represents the logarithm base 2 of x, which is the exponent to which the base 2 must be raised to obtain x. The graph of f(x) is a curve that increases slowly as x increases. The point (2, 1) indicates that 2 raised to the power of 1 is equal to 2, which aligns with the properties of logarithms.
Learn more about graph here
https://brainly.com/question/19040584
#SPJ11
a sample of n = 8 scores has a mean of m = 10. after one score is removed from the sample, the mean for the remaining score is found to be m = 11. what was the score that was removed?
If a sample of 8 scores has a mean of 10 and after removing one score, the mean of the remaining scores is 11, the score that was removed is 7.
The mean of the original sample is 10. This means that the sum of the scores in the sample is 8 multiplied by 10, which equals 80. After one score is removed, the mean of the remaining scores is 11. Since there are now 7 scores remaining in the sample, the sum of those scores is 7 multiplied by 11, which equals 77.
To find the score that was removed, we need to calculate the difference between the sum of the original sample and the sum of the remaining scores. The difference is 80 minus 77, which equals 3. Therefore, the score that was removed from the sample is 3.
Learn more about sum here: https://brainly.com/question/17208326
#SPJ11
will mark brainliest!!
picture included ^^^^
please and THANK YOU
^^!!
============================================
Work Shown:
Apply the Law of Sines to get the following. Make sure your calculator is in degree mode.
\(\frac{\sin(A)}{a}=\frac{\sin(B)}{b}=\frac{\sin(C)}{c}\\\\\frac{\sin(A)}{a}=\frac{\sin(C)}{c}\\\\\frac{\sin(20)}{4}=\frac{\sin(87)}{c}\\\\c*\sin(20)=4*\sin(87)\\\\c=\frac{4*\sin(87)}{\sin(20)}\\\\c\approx 11.6791897\\\\c\approx 11.7\\\\\)
So that's why the answer is choice D) 11.7
Write an inequality, in slope-intercept form, for the graph below. If necessary,use "<=" for sor">=" for >.5(-3,0)5(0, -3)
we need to find the line equation for the dashed line. Since we have 2 points of the line, its slope is
\(\begin{gathered} m=\frac{-3-0}{0-(-3)} \\ m=\frac{-3}{3} \\ m=-1 \end{gathered}\)where we used the slope formula:
\(m=\frac{y_2-y_1}{x_2-x_1}\)Then, our searched line has the form:
\(y=-x+b\)where b is the y-intercept. We can finde b by substituting point (0,-3) into the last equation:
\(\begin{gathered} -3=-(0)+b \\ b=-3 \end{gathered}\)then, the searched line in slope-intercept form is
\(y=-x-3\)Therfore, the given area can be modeled as
\(y>-x-3\)because when a line is dashed it doesn't belong to the given area.
how to solve -2 1/3 - (-5)
Answer:
-7 1/3
Step-by-step explanation:
Answer:
10/3
Step-by-step explanation:
hope it's helpful ❤❤❤
THANK YOU
Suppose IQ scores were obtained for 20 randomly selected sets of twins. The 20 pairs of measurements yield x = 96.62, y= 94.75, r=0.879, P-value = 0.000, and ŷ = -2.59 + 1.01x, where x represents the IQ score of the twin born first. Find the best predicted value of ý given that the twin born first has an IQ of 109?
Answer:the best predicted value of ý when the twin born first has an IQ of 109 is 107.50
Step-by-step explanation:
Given the regression equation:
ŷ = -2.59 + 1.01x
We need to predict the value of ý when x (IQ score of the twin born first) is 109.
So we substitute x = 109 into the regression equation:
ŷ = -2.59 + 1.01(109)
ŷ = -2.59 + 110.09
ŷ = 107.50
Therefore, the best predicted value of ý when the twin born first has an IQ of 109 is 107.50.
Consider the probability that greater than 99 out of 160 students will graduate on time. Assume the probability that a given student will graduate on time is 57%
Approximate the probability using the normal distribution. Round your answer to four decimal places.
The probability that greater than 99 out of 160 students will graduate on time is 0.1011, or 10.11%
To approximate the probability that greater than 99 out of 160 students will graduate on time given that the probability for a single student is 57%, we will use the normal distribution follow the given steps:
1. Determine the mean (μ) and standard deviation (σ) of the binomial distribution.
μ = n * p = 160 * 0.57 = 91.2
σ = sqrt(n * p * (1-p)) = sqrt(160 * 0.57 * 0.43) ≈ 6.498
2. Convert the problem to a standard normal distribution (Z-distribution) by finding the Z-score:
Z = (X - μ) / σ
Since we want to find the probability of more than 99 students graduating, we will use 99.5 (continuity correction).
Z = (99.5 - 91.2) / 6.498 ≈ 1.276
3. Look up the Z-score in a standard normal (Z) table or use a calculator to find the area to the right of Z. The area to the left of Z is 0.8989.
4. Subtract the area to the left of Z from 1 to find the area to the right (our desired probability):
P(X > 99) = 1 - 0.8989 = 0.1011
So, the probability that greater than 99 out of 160 students will graduate on time is approximately 0.1011, or 10.11% when rounded to four decimal places.
Know more about probability here:
https://brainly.com/question/13604758
#SPJ11
how many solutions are there to square root x =9
Answer:
There are 2 solutions to square root x = 9
They are 3, and -3
Step-by-step explanation:
The square root of x=9 has 2 solutions,
The square root means, for a given number, (in our case 9) what number times itself equals the given number,
Or, squaring (i.e multiplying with itself) what number would give the given number,
so, we have to find the solutions to \(\sqrt{9}\)
since we know that,
\((3)(3) = 9\\and,\\(-3)(-3) = 9\)
hence if we square either 3 or -3, we get 9
Hence the solutions are 3, and -3
The data shows the total number of employee medical leave days taken for on the job accidents in the first six months of the year 14, 6, 18, 10,22, 14. Find the mean number of days taken for medical leave each month.The mean number of days taken for medical leave each month is
ANSWER
14 days
EXPLANATION
The mean of a data set is the sum of all data, divided by the number of data,
\(\bar{x}=\frac{1}{n}\sum_{i\mathop{=}1}^nx_i\)In this case, the number of data is 6, so the mean is,
\(\bar{x}=\frac{14+6+18+10+22+14}{6}=\frac{84}{6}=14\)Hence, the mean number of days taken for medical leave each month is 14.
You purchased a new car. The car had a list price of $41,070. You are paying 5.09% interest compounded monthly over a payment period of FIVE years. If you also had to pay 5.86% sales tax, a $384 vehicle registration fee, and an $89 documentation fee, what is your monthly payment?
Answer:
The monthly payment is approximately $2,356.89
Step-by-step explanation:
The list price of the car, P = $41,070
The interest rate payed, r = 5.09% compounded monthly
Therefore, the number of interest calculated per period, n = 1
The payment period, t = 5 years
The amount payed as sales tax = 5.86%
The amount paid as registration fee = $384
The amount paid as documentation fee = $89
The total amount to be paid, A = 41,070 + 41,070 × 0.0586 + 384 + 89 = 43,949.702
Therefore, the monthly payment, 'M', is given by the following formula;
\(M = \dfrac{P \cdot \left(\dfrac{r}{n} \right) \cdot \left(1+\dfrac{r}{n} \right)^{n \cdot t} }{\left(1+\dfrac{r}{n } \right)^{n \cdot t} - 1}\)
Therefore, we get;
\(M = \dfrac{43,949.702\times \left(\dfrac{0.0509}{1} \right) \cdot \left(1+\dfrac{0.0509}{1} \right)^{1 \times 60} }{\left(1+\dfrac{0.0509}{1 } \right)^{1 \times 60} - 1} \approx 2,356.89\)
The monthly payment, M ≈ $2,356.89.
SHOW WORK PLEASE Find the future value of an annuity of $500 per year for 12 years if the interest rate is 5%.
The future value of an annuity of $500 per year for 12 years, with an interest rate of 5%, can be calculated using the future value of an ordinary annuity formula. The future value is approximately $7,005.53.
To calculate the future value of an annuity, we can use the formula:
FV = P * [(1 + r)^n - 1] / r
Where:
FV is the future value of the annuity,
P is the annual payment,
r is the interest rate per compounding period,
n is the number of compounding periods.
In this case, the annual payment is $500, the interest rate is 5% (or 0.05), and the number of years is 12. As the interest is compounded annually, the number of compounding periods is the same as the number of years.
Plugging the values into the formula:
FV = $500 * [(1 + 0.05)^12 - 1] / 0.05
= $500 * [1.05^12 - 1] / 0.05
≈ $500 * (1.795856 - 1) / 0.05
≈ $500 * 0.795856 / 0.05
≈ $399.928 / 0.05
≈ $7,998.56 / 100
≈ $7,005.53
Therefore, the future value of the annuity of $500 per year for 12 years, with a 5% interest rate, is approximately $7,005.53.
Learn more about here:
#SPJ11
Subtract using the number line.
−23−(−113)
−123
−23
−13
23
Answer:
The answer is 2/3
Step-by-step explanation:
Help me with this problem
Answer:
The answer is 180 - 65
Step-by-step explanation:
We got 180, because that is the number of degree's in a line
so 180 - 65 is 115 degrees, that's your answer :)
In isosceles triangle ABC, AB BC, m/B = 45°,
and AB = 3√2. The area of the triangle is
A) 9√/2
B) 9/2
C) 3√2/2
D) 9√2
Answer:
I think its A
Step-by-step explanation:
what is the length x of PQ
Answer:
11.2
Step-by-step explanation:
If the rectangulars are similar then we can use similarity ratio to calculate value of x
CD is similar to RS and AB is similar to QP
4/6.4 = 7/x cross multiply expressions
4x = 44.8 divide both sides by 4
x = 11.2
help me with my math for brainiest:)
describe the vertical asymptotes) and holes) for the graph of y=x-6/x^2 5x 6
Given the function `y = (x-6) / (x^2 + 5x + 6)`, let's identify the vertical asymptotes and holes: Factoring the denominator, we get`(x^2 + 5x + 6) = (x+2)(x+3)`So, `y = (x-6) / (x+2)(x+3)`
The vertical asymptotes of the function are the roots of the denominator. Thus, the vertical asymptotes of the function are `x = -2` and `x = -3`.Now, we'll look for the holes in the function. A hole is a point where the function is undefined but can be simplified by canceling common factors.
In the given function, we notice that the numerator `(x-6)` and the denominator `(x+2)(x+3)` have a common factor of `(x-6)`. Thus, there is a hole at `x = 6`.We can cancel `(x-6)` from both numerator and denominator to obtain the simplified function `y = 1 / (x+3)`.Therefore, the vertical asymptotes are `x = -2` and `x = -3`, and there is a hole at `x = 6`.
To know more about denominator refer to:
https://brainly.com/question/24485638
#SPJ11
7 47/50 as a decimal
Answer:
0.94
Step-by-step explanation:
You just divide 47 by 50 and you get 0.94 bam!
we have a jar of coins, all dimes and nickels. all together, we have 250 coins, and the total value of all coins in the jar is $ 18.4. how many dimes are there in the jar?
Answer: there are 118 dimes in the jar.
Step-by-step explanation: Let's use a system of equations to solve the problem:
Let d be the number of dimes and n be the number of nickels.
We know that:
d + n = 250 (Equation 1) (The total number of coins is 250)
0.1d + 0.05n = 18.4 (Equation 2) (The total value of all coins is $18.4)
To solve for d, we need to eliminate n from the equations above. We can do this by multiplying Equation 1 by -0.05 and adding it to Equation 2:
-0.05d - 0.05n = -12.5
0.1d + 0.05n = 18.4
0.05d = 5.9
Dividing both sides by 0.05, we get:
d = 118
Therefore, there are 118 dimes in the jar.
convolution, Fourier series representation problems
w 32. Use the convolution theorem to solve the integral equation: y(t) = ? + - sinhít – sinh(t - A)g()dx 33. Find the Fourier series representation of f(x) given that f(x) = -{: -1, - < x < 0 , 0
32. Solving integral equation using the convolution theoremThe convolution theorem states that the convolution of two signals in the time domain is equivalent to multiplication in the frequency domain.
Therefore, to solve the given integral equation using the convolution theorem, we need to take the Fourier transform of both sides of the equation.
y(t) = ∫_{-∞}^{∞} sinh(−)g() + ∫_{-∞}^{∞} sinh(−−)g()Taking the Fourier transform of both sides, we haveY() = 2π[G()sinh() + G()sinh(−)]where Y() and G() are the Fourier transforms of y(t) and g(t), respectively.Rearranging for y(t), we gety(t) = (1/2π) ∫_{-∞}^{∞} [G()sinh()+G()sinh(−)]e^(j) d= (1/2π) ∫_{-∞}^{∞} [G()sinh()+G()sinh(−)](cos()+j sin())d= (1/2π) ∫_{-∞}^{∞} [G()sinh()+G()sinh(−)]cos()d+ j(1/2π) ∫_{-∞}^{∞} [G()sinh()+G()sinh(−)]sin()dTherefore, the solution to the integral equation is given by:y(t) = (1/2π) ∫_{-∞}^{∞} [G()sinh()+G()sinh(−)]cos()d + (1/2π) ∫_{-∞}^{∞} [G()sinh()+G()sinh(−)]sin()d
It is always important to understand the principles that govern an integral equation before attempting to solve them. In this case, we used the convolution theorem to solve the equation by taking the Fourier transform of both sides of the equation and rearranging for the unknown signal. The steps outlined above provide a comprehensive solution to the equation. 33. Fourier series representation of f(x)
The Fourier series representation of a periodic signal is an expansion of the signal into an infinite sum of sines and cosines. To find the Fourier series representation of the given signal, we need to first compute the Fourier coefficients, which are given by:an = (1/T) ∫_{-T/2}^{T/2} f(x)cos(nx/T) dxbn = (1/T) ∫_{-T/2}^{T/2} f(x)sin(nx/T) dxFurthermore, the Fourier series representation is given by:f(x) = a_0/2 + Σ_{n=1}^{∞} a_n cos(nx/T) + b_n sin(nx/T)where a_0, a_n, and b_n are the DC and Fourier coefficients, respectively. In this case, the signal is given as:f(x) = -1, -π
To know more about integral visit
https://brainly.com/question/31433890
#SPJ11
A survey related to professor effectiveness was administered to studentswho chose the professor as the chair of their doctoral committee. The resultsof the survey showed 100% effectiveness. Another survey was administeredto all students taking courses under the professor. The results of this surveyshowed 70% effectiveness. This is a classic example of an error in whichphase of inferential statistics?
For this case we have different effectiveness using two conditions the first one with to students who chose the professor as the chair of their doctoral committe and the second is associated to all students and we see a different effectiveness
This is a clear example of an error in the A)Data Gathering Phase
And the reason is because they introduce bias in the study just selecting students who select the professor as the chair of their doctoral committee, and it's very evident when they select all the students the real results change
How does Dickinson's use of rhyme reflect her
interpretation of the traditional ballad form?
She follows the tradition of the ballad by
using perfect rhyme.
She uses rhyme in a variety of ways to
combine the ballad with her own style.
She avoids rhyme altogether to create a
more modern style.
She uses rhyme incorrectly because she
doesn't understand the ballad form.
Answer:
b on edge 2020
Step-by-step explanation:
Identify the slope shown in the linear equation below. y = - 5x + 3
Answer:
Slope: -5 Y-intercept: 3
Step-by-step explanation:
the slope intercept of a linear equation is:
y=mx+b
were m is slope. and b is the y intercept
therfore the problem is:
y=-5x+3
m=-5 so the slope is -5
b=3 so the y-intrercept is 3
Answer:
-5
Step-by-step explanation:
The slope is always in front of the x
a store purchases a jacket for $56 the store than marks It Up by 80% by selling it how much will you pay after the markup.
Answer:
70
Step-by-step explanation:
Answer:
70
Step-by-step explanation:
56 divided by 80% = 70
Suppose the radius of a circle is \color{purple}{2}2start color purple, 2, end color purple units. What is its circumference?
Use 3.14 for \piπpi and enter your answer as a decimal.
The circumference of the circle is 12.56 units
How to determine the circumference of the circle?From the question, we have the following parameters that can be used in our computation:
Radius = 2 units
The circumference of the circle is calculated as
C = 2πr
Where
r = Radius = 2 units
Substitute r =2 in C = 2πr
C = 2π * 2
So, we have
C = 2 * 3.14 * 2
Evaluate the products
C = 12.56
Hence, the circumference is 12.56 units
Read more about circumference at
https://brainly.com/question/3883184
#SPJ1