The imaginary \(i^{32}\) is equal to 1.
We have,
The imaginary unit, denoted by "i," is defined as the square root of -1.
To find \(i^{32}\), we can start by looking for a pattern.
When we raise i to powers, we observe the following pattern:
\(i^1 = i\\i^2 = -1\\i^3 = -i\\i^4 = 1\\\)
This pattern repeats every four powers.
We can simplify \(i^{32}\) by dividing the exponent 32 by 4:
32 ÷ 4 = 8
Since 8 is a multiple of 4, we can rewrite \(i^{32}\) as \((i^4)^8\).
Since \(i^4\) equals 1, we can simplify further:
\((i^4)^8 = 1^8 = 1\)
Therefore,
The imaginary \(i^{32}\) is equal to 1.
Learn more about imaginary numbers here:
https://brainly.com/question/12821439
#SPJ1
Angles u & v are complementary. angle u has a measure of 3x + 4. angle v has a measure of 56. what is the value of x?
In summary solution for this question the value of x is 10.
Angles u and v are complementary, which means their measures add up to 90 degrees.
Given:
Angle u = 3x + 4
Angle v = 56
To find the value of x, we can set up an equation using the fact that the sum of the angle measures is 90 degrees:
Angle u + Angle v = 90
Substituting the given values:
(3x + 4) + 56 = 90
Now, we can solve for x:
3x + 4 + 56 = 90
3x + 60 = 90
3x = 90 - 60
3x = 30
x = 30/3
x = 10
Therefore, the value of x is 10.
To know more about Angle related question visit:
https://brainly.com/question/31818999
#SPJ11
a roulette wheel has the numbers from 1 to 36, as well as 0 and 00. when an odd number comes up, you win $1; otherwise, you lose $1. what is the expected gain (or loss) from a single trial? what is the variance of the gain (or loss)?
The predicted gain (or loss) from a single trial is 53 cents per game on average.
A roulette wheel has the number 1 through 36, as well as 0 and 00. If you wager $1 that an odd number would show up, you will win or lose $1 depending on whether or not that occurrence occurs. If random variable X represents your net benefit, X=1 with probability 18/38 and X=-1 with probability 20/38.
E(X) = 1(18/38) – 1 (20/38) = -$.053
On average, the casino wins 5 cents for each game.
If the stakes are raised, the casino makes even more money:
E(X) = 10(18/38) – 10 (20/38) = -$.53
If the cost is $10 for each game, the casino wins an averaged of 53 cents per game. If 10,000 games are played in a single night, that's a cool $5300.
To learn more about the roulette wheel probability questions, use the link below.
https://brainly.com/question/5883617?referrer=searchResults
#SPJ4
what is the volume of is a rectangular prism that is 14 inches long, 7 inches wide, and 10 inches high?
Answer:
Step-by-step explanation:
980
The table shows the total distance that Myra runs over different time periods.
A 2-column table with 5 rows titled Time and Distance Ran by Myra. The first column is labeled Time (minutes) with entries 0, 2, 4, 6, 8. The second column is labeled Distance (miles) with entries 0.0, 0.4, 0.8, 1.2, 1.6.
Distance is increasing with a speed of 0.2 Miles/Min
What is an expression?Mathematical expression is defined as the collection of the numbers variables and functions by using operations like addition, subtraction, multiplication, and division.
Given that;
Time in Minutes Distance in Miles
0 0.0
2 0.4
4 0.8
6 1.2
8 1.6
Here, Myra’s distance is increasing as time increase with a constant Speed.
Now, In every 2 mins distance traveled = 0.4 Miles
Hence, In every 1 min Distance traveled = 0.4/2 = 0.2 Miles/Min
Thus, Distance is increasing with a speed of 0.2 Miles/Min.
Learn more about the mathematical expression visit:
brainly.com/question/1859113
#SPJ1
what is the percent of water for a compound given the following data? trial masses 1 2 3 beaker (g) 10.001 10.002 10.050 beaker sample (g) 11.001 10.999 11.052 beaker sample after 1st heating (g) 10.915 10.771 10.821 beaker sample after 2nd heating (g) 10.615 10.571 10.621 report all values to three significant figures. what is the percent water of sample 1? number what is the percent water of sample 2? number what is the percent water of sample 3? number do not include % sign in answer and use the 3 sig figs from percents above to calculate the answers below!! what is the average? number what is the median value? number what is the range? number what is the relative percent range? number
1. For sample 1:
- Percent of water: 48.85%
2. For sample 2:
- Percent of water: 35.14%
3. For sample 3:
- Percent of water: 34.97%
4. Average percent of water for all three samples: 39.65%
5. Median percent of water: 35.14%
6. Range of percent of water: 13.88%
7. Relative percent range: 35.04%
To find the percent of water in a compound, we can use the following steps:
⇒ Calculate the mass of water lost during heating.
- Subtract the mass of the beaker after the 2nd heating from the mass of the beaker sample after the 2nd heating. This gives you the mass of water lost during heating.
⇒ Calculate the mass of the compound.
- Subtract the mass of the beaker sample after the 2nd heating from the mass of the beaker sample. This gives you the mass of the compound.
⇒ Calculate the percent of water.
- Divide the mass of water lost during heating by the mass of the compound.
- Multiply the result by 100 to get the percent.
Now, let's calculate the percent of water for each sample:
For sample 1:
- Mass of water lost = 10.915 g - 10.615 g = 0.300 g
- Mass of the compound = 10.615 g - 10.001 g = 0.614 g
- Percent of water = (0.300 g / 0.614 g) x 100 = 48.85%
For sample 2:
- Mass of water lost = 10.771 g - 10.571 g = 0.200 g
- Mass of the compound = 10.571 g - 10.002 g = 0.569 g
- Percent of water = (0.200 g / 0.569 g) x 100 = 35.14%
For sample 3:
- Mass of water lost = 10.821 g - 10.621 g = 0.200 g
- Mass of the compound = 10.621 g - 10.050 g = 0.571 g
- Percent of water = (0.200 g / 0.571 g) x 100 = 34.97%
To calculate the average, add up the percent of water for all three samples and divide by 3:
- (48.85% + 35.14% + 34.97%) / 3 = 39.65%
To find the median value, arrange the percent of water values in ascending order and find the middle value:
- 34.97%, 35.14%, 48.85%
- The median value is 35.14%.
To calculate the range, subtract the smallest value from the largest value:
- Largest value: 48.85%
- Smallest value: 34.97%
- Range: 48.85% - 34.97% = 13.88%
To calculate the relative percent range, divide the range by the average and multiply by 100:
- Relative percent range = (13.88% / 39.65%) x 100 = 35.04%
Please note that these calculations are based on the given data and are accurate to three significant figures.
To know more about median, refer here:
https://brainly.com/question/11237736#
#SPJ11
The state of a spin 1/2 particle in Sx basis is defined as (Ψ) = c+l + x) + i/√7 l - x) a) Find the amplitude c+ assuming that it is a real number and the state vector is properly defined. b) Find the expectation value . c) Find the uncertainty △SX.
1) The amplitude c+ is c+l
2) The expectation value is 0
3) The uncertainty ΔSX is √(3/7) c+.
Now, we know that any wave function can be written as a linear combination of two spin states (up and down), which can be written as:
Ψ = c+ |+> + c- |->
where c+ and c- are complex constants, and |+> and |-> are the two orthogonal spin states such that Sx|+> = +1/2|+> and Sx|-> = -1/2|->.
Hence, we can write the given wave function as:Ψ = c+|+> + i/√7|->
Now, we know that the given wave function has been defined in Sx basis, and not in the basis of |+> and |->.
Therefore, we need to write |+> and |-> in terms of |l> and |r> (where |l> and |r> are two orthogonal spin states such that Sy|l> = i/2|l> and Sy|r> = -i/2|r>).
Now, |+> can be written as:|+> = 1/√2(|l> + |r>)
Similarly, |-> can be written as:|-> = 1/√2(|l> - |r>)
Therefore, the given wave function can be written as:Ψ = (c+/√2)(|l> + |r>) + i/(√7√2)(|l> - |r>)
Therefore, we can write:c+|l> + i/(√7)|r> = (c+/√2)|+> + i/(√7√2)|->
Comparing the coefficients of |+> and |-> on both sides of the above equation, we get:
c+/√2 = c+l/√2 + i/(√7√2)
Therefore, c+ = c+l
The amplitude c+ is a real number and is equal to c+l
The expectation value of the operator Sx is given by: = <Ψ|Sx|Ψ>
Now, Sx|l> = 1/2|r> and Sx|r> = -1/2|l>
Hence, = (c+l*) + (c+l) + (i/√7) - (i/√7)(c+l*)= -i/√7(c+l*) + i/√7(c+l)= 2i/√7 Im(c+)
As c+ is a real number, Im(c+) = 0
Therefore, = 0
The uncertainty ΔSX in the state |Ψ> is given by:
ΔSX = √( - 2)
where = <Ψ|Sx2|Ψ>and2 = (<Ψ|Sx|Ψ>)2
Now, Sx2|l> = 1/4|l> and Sx2|r> = 1/4|r>
Hence, = (c+l*) + (c+l) + (i/√7) - (i/√7)(c+l*)= 1/4(c+l* + c+l) + 1/4(c+l + c+l*) + i/(2√7)(c+l* - c+l) - i/(2√7)(c+l - c+l*)= = 1/4(c+l + c+l*)
Now,2 = (2i/√7)2= 4/7ΔSX = √( - 2)= √(1/4(c+l + c+l*) - 4/7)= √(3/14(c+l + c+l*))= √(3/14 * 2c+)= √(3/7) c+
Learn more about the wave function at
https://brainly.com/question/31744195
#SPJ11
so
How would you write 6.5E4
pls help ;-; me with this question
chap: linear equations in one variable
grade: 8
Answer:
Step-by-step explanation:
Answer:
1.5 or 3/2
Step-by-step explanation:
\(\frac{2x+1}{2x-1} =2\\(\frac{2x+1}{2x-1} )(2x-1)=2(2x-1)\\2x+1 = 4x-2\\2x+1-4x=4x-2-4x\\-2x+1=-2\\-2x+1-1=-2-1\\-2x=-3\\x=\frac{-3}{-2} \\=1.5 or \frac{3}{2}\)
1) Ava's monthly bank statement showed the
following deposits and withdrawals:
-$20.10, $41.50, -$9.03, -$8.25, $44.22
If Ava's balance in the account was $62.50 at
the beginning of the month, what was her
account balance at the end of the month?
What is the monthly payment for a $4,000 two-year loan with an APR of 4%?
A loan calculator is an automated instrument that enables you to comprehend what your potential monthly loan payments and total loan cost might be. Online, you can find a variety of loan calculators, such as those for mortgages or other kinds of specialized loans.
What is the cost of a $4000 loan every month?The amount due each month is $4000.
Detailed explanation:
Given: $4168.79 in total interest has been paid for a loan with a two-year term at 4% interest compounded monthly.
Identify: What is the loan's monthly payment?
Answer: $4168.79 in total interest for a two-year loan compounded monthly.
To Learn more About Loan calculator, Refer:
https://brainly.com/question/13005100
#SPJ10
List the first five terms of the sequence. a₁ = 3, an+1 = 5an - 1 = 3 a₁ = 3,
a2 = 20 аз = 75 a4 = 375 a5 = 1875
The sequence is defined recursively as a₁ = 3 and an+1 = 5an - 1. The first five terms of the sequence are 3, 20, 75, 375, and 1875.
The given sequence is defined recursively, meaning that each term is calculated based on the previous term. The first term, a₁, is given as 3. To find the subsequent terms, we use the recursive formula an+1 = 5an - 1.
To find a₂, we substitute n = 1 into the formula, giving us a₂ = 5a₁ - 1 = 5(3) - 1 = 15 - 1 = 14.
To find a₃, we substitute n = 2 into the formula, giving us a₃ = 5a₂ - 1
5(14) - 1 = 70 - 1 = 69.
Continuing this process, we can find a₄ and a₅. Using the formula, a₄ = 5a₃ - 1 = 5(69) - 1 = 345 - 1 = 344, and a₅ = 5a₄ - 1 = 5(344) - 1 = 1720 - 1 = 1719.
Hence, the first five terms of the sequence are 3, 14, 69, 344, and 1719.
Learn more about sequence here:
https://brainly.com/question/19819125
#SPJ11
What is the value of x?
Enter your answer in the box.
x =
Answer: x=20
Step-by-step explanation:
3(20)+50= 110
6(20)-10= 110
Answer:
x=20
Step-by-step explanation:
3x+50 = 6x-10
we put all the variables in one side and the numbers in one side
so 3x-6x = -50-10
-3x = -60
x=20
so ( 3×20+50) = (6×20 - 10 )
110=110 ✓
so the answer is 20
Classify the given Differential Equation as Ordinary or Partial, Linear or NonLinear and homogeneous or nonhomogeneous. State the order of the Differential Equation. Then verify the indicated function is or is not a solution the given problem: a. dx 2
d 2
y
−6 dx
dy
+13y=0 given y=e 3x
cos(2x) b. 4
1
y ′′
+x(y ′
) 2
=0 given y=6− x
2
The differential equation is a mathematical equation that relates a function to its derivatives.
Differential equations are of two types: ordinary differential equations (ODEs) and partial differential equations (PDEs).
Ordinary differential equations (ODEs) deal with the functions of a single variable and its derivatives.
Partial differential equations (PDEs) are equations that involve partial derivatives of functions of multiple variables. Linear Differential Equation: If the dependent variable and its derivatives occur in the differential equation linearly, then it is called a linear differential equation.
Nonlinear Differential Equation: A differential equation is nonlinear if it is not a linear equation.
Homogeneous Differential Equation: A homogeneous equation is a type of differential equation in which all the terms have the same degree of the dependent variable and its derivatives. Non-Homogeneous Differential Equation: A differential equation is non-homogeneous if it is not a homogeneous equation.
\(The differential equation dx2 d2y/dx2 - 6dy/dx + 13y = 0\) given is the Ordinary Linear Homogeneous Differential Equation of the Second Order.
Therefore the order of the given Differential Equation is 2. y=e3xcos(2x) can be verified as a solution to the given differential equation dx2 d2y/dx2 - 6dy/dx + 13y = 0 as follows: Given, y = e3xcos(2x)Let us differentiate y twice:dy/dx = 3e3xcos(2x) - 2e3xsin(2x)And, d2y/dx2 = 9e3xcos(2x) - 12e3xsin(2x) - 12e3xsin(2x) - 4e3xcos(2x)
\(Hence the differential equation can be verified by substituting y=e3xcos(2x)\)
\(Putting the values we getdx2 d2y/dx2 = -13e3xcos(2x)\) and \(-6dy/dx = -6(3e3xcos(2x) - 2e3xsin(2x))= -18e3xcos(2x) + 12e3xsin(2x)And 13y = 13e3xcos(2x)\)
\(By substituting the values, we getdx2 d2y/dx2 - 6dy/dx + 13y = -13e3xcos(2x) + 18e3xcos(2x) - 12e3xsin(2x) + 13e3xcos(2x)=0\)
Therefore the indicated function y=e3xcos(2x) is a solution to the given differential equation.
To know more about the word substituting visits :
https://brainly.com/question/27759377
#SPJ11
~(~p) is always equivalent to
1: q
2: (~(~(~ (~p))))
3: ~P
4: ~q
Can someone read and answer the question please ?
Answer: the last one
Step-by-step explanation:
how do I find the volume?
Answer:
Width x length
Step-by-step explanation:
Find the width or how wide it is
Then find the length or how long it is
multiply those
Which expression is equal to "four times the sum of twelve and a
number"?
a) 4x 12+n
b) (4x12) +n
c) 4x (12+ n)
d) 4+ (12 x n)
NEED A ANSWER ASAP
Step-by-step explanation:
a) 4x 12+n = There are no like terms )
b) (4x12) +n = There are no like terms )
c) 4x (12+ n) = 4nx+48x
d) 4+ (12 x n) =12nx+4
( I hope this was helpful ) >;D
20. At a track meet, teams get points for placing in the top 6 of each event. 1" place = 10 pts, 2nd place 8 pts, 30 = 6 pts, 4 = 4 pts, 5* = 2 pts, and 6h - 1 pt. At the last trackmeet, El Dorado scored 188 pts off of 38 scoring events. The number of 1 place finishes was equal to the number of 4 place finishes. The number of 2nd place finishes was half as many as the number of 3d place finishes. The number of 5 places finishes was equal to the sum of the number of 1" and 2nd place finishes. The number of 2nd place finishes was equal to the number of 6 place finishes. How many of each place did El Dorado have?
Answer:
I feel like this question would be easier when given a few starting values. I'm sorry man but I've been sitting here for 30 minutes trying to figure this out.
Step-by-step explanation:
This design began from the construction of a regular hexagon.
Select all true statements about quadrilateral JKLO.
1.) When JKLO is reflected across segment OA, JKLO is taken to HGLO. So, quadrilateral JKLO is congruent to quadrilateral HGLO.
2.) When JKLO is reflected across segment OJ, JKLO is taken to JIHO. So, quadrilateral JKLO is congruent to quadrilateral JIHO.
3.) When JKLO is reflected in any way, it will not produce another congruent quadrilateral in this figure. However, there is a way to translate JKLO to take it to another quadrilateral in this figure.
4.) When JKLO is reflected across segment OI, JKLO is taken to JIHO. So, quadrilateral JKLO is congruent to quadrilateral JIHO.
5.) When JKLO is reflected across segment OL, JKLO is taken to HGLO. So, quadrilateral JKLO is congruent to quadrilateral HGLO.
The true statements regarding the construction are statement 2) and statement 5)
What is construction?"Construction" in Geometry means to draw shapes, angles or lines accurately. These constructions use only compass, straightedge (i.e. ruler) and a pencil.
Given that, A design began from the construction of a regular hexagon.
The true statements made on the construction is;
2) When JKLO is reflected across segment OJ, JKLO is taken to JIHO. So, quadrilateral JKLO is congruent to quadrilateral JIHO.
5) When JKLO is reflected across segment OL, JKLO is taken to HGLO. So, quadrilateral JKLO is congruent to quadrilateral HGLO.
Hence, The true statements regarding the construction are statement 2) and statement 5)
For more references on constructions, click;
https://brainly.com/question/8606089
#SPJ1
Find the indicated angles round your final answer to the nearest hundredths! Show all work!
Answer:
given and explained below.
Step-by-step explanation:
b)
opposite/ adjacent = tan(∅)
tan(∅) = 8 /5
∅ = \(tan^{-1}( 8/5)\)
∅ = 58.99°
c)
opposite/hypotenuse = sin(x)
sin(x) = 7 / 12
x = \(sin^{-1} (7/12)\)
x = 35.68°
adjacent/hypotenuse = cos(y)
cos(y) = 7/12
y=\(cos^{-1} (7/12)\)
y = 54.31°
d)
cos(T) = adjacent / hypotenuse
cos(T) = 7.5/9
T = \(cos^{-1}(7.5 / 9) \)
∠T=33.56°
Step-by-step explanation:
the 3 main tools we need here :
- the sum of all angles in a triangle is always 180°.
- Pythagoras : c² = a² + b²
- the law is sine : a/sin(A) = b/sin(B) = c/sin(C)
b)
in order to be able to use the law of sine, we need to get the length of the baseline.
Pythagoras
baseline² = 8² + 5² = 64 + 25 = 89
baseline = sqrt(89)
8/sin(angle) = sqrt(89)/sin(90) = sqrt(89)/1 = sqrt(89)
sin(angle) = 8/ sqrt(89) = 0.847998304...
angle = 57.99461679...° ≈ 58° (or 57.99° officially rounded to the nearest hundredths)
c)
7/sin(x) = 12/sin(90) = 12/1 = 12
sin(x) = 7/12 = 0.583333333...
x = 35.68533471...° ≈ 35.69°
y = 180 - 90 - 35.69 = 54.31°
d)
9² = RG² + 7.5²
81 = RG² + 56.25
RG² = 24.75
RG = sqrt(24.75) = 4.974937186...
sqrt(24.75)/sin(T) = 9/sin(90) = 9/1 = 9
sin(T) = sqrt(24.75)/9 = 0.552770798...
T = 33.55730976...° ≈ 33.56°
Which is the equation of the line that is parallel to the graph of y = 5x + 7 and has a y-intercept at -2?
Solve |4x-8|<12
Which of these three is true?
{x|-12
{x|-1
{x|-5
\(4x - 8 < 12 \\ 4x < 12 + 8 \\ 4x < 20 \\ \frac{4x}{4} < \frac{20}{4} \\ x < 5 \\ \\ or \\ \\ 4x - 8 > - 12 \\ 4x > - 12 + 8 \\ 4x > - 4 \\ \frac{4x}{4} > \frac{ - 4}{4} \\ x > - 1 \\ \\ = - 1 < x < 5\)
I hope this helps!!!!
AS PER THE LAST STATEMENT YOU GAVE I CANNOT SEE THROUGH IF THE DETAILS ARE COMPLETE OR WRITTEN IN THE CORRECT FORM..THIS WILL GIVE YOU A DETAILED HINT TO CHOOSE THE CORRECT ONE!!!!!!!
PLS SOMEONE HELP FIND THE ANSWERS
Answer:
6. 24
Step-by-step explanation:
A) Use pythogaras theoram
8x8 - 5x5 = axa - bxb = c
64-25= 39
39 square root =6.24
Help please I don’t know what to do!!!!!
Answer:
\(y = 2(2) {}^{x} \)
Step-by-step explanation:
It ask us to create a exponential function. A exponential function is represented by a equation like this
\(y = ab {}^{x} \)
where a is the vertical stretch, b is the constant rate of growth, and x is the nth exponet.
Using the point 0,2
we can plug that in to find a part of the equation above.
let x=0 and y=2
\(2 = ab {}^{0} \)
\(b {}^{0} = 1\)
\(2 = a \times 1\)
\(a = 2\)
Let update the equation now since a equal 2
\(y = 2b {}^{x} \)
Now let use point 2,8 to find the b value
let x=2 and y=8
\(8 = 2b {}^{2} \)
Divide both sides by 2
\(4 = {b}^{2} \)
take the sqr root of 4
\(b = 2\)
Let update the equation
\(y = 2(2) {}^{x} \)
help me brainlist if you right Mona is inviting 10 friends to a party. Each friend wants 5 cookies and each box has 10 cookies. How many boxes should Moana get?
Answer:
its 5 boxes
Step-by-step explanation:
Based on an analysis of sample data, an article proposed the pdf f(x) = 0.55e-0.55(x - 1) when x ≥ 1 as a model for the distribution of X = time (sec) spent at the median line. (Round your answers to three decimal places.) (a) What is the probability that waiting time is at most 6 sec? More than 6 sec?
at most 6 sec P (X ≤ 6) = ______
more than 6 sec P (X > 6)
(b) What is the probability that waiting time is between 4 and 8 sec?
Probability that the waiting time at the median line is at most 6 seconds is approximately 0.596 and more than 6 seconds is approximately 0.404 and between 4 and 8 seconds is approximately 0.336.
To calculate the probability, we need to integrate the probability density function (PDF) within the specified range.
(a) To find the probability that the waiting time is at most 6 seconds (P(X ≤ 6)), we need to integrate the PDF from 1 to 6:
P(X ≤ 6) = \(\int\limits^1_6 {0.55e^{(-0.55(x-1)} } \, dx\)
Evaluating the integral, we get P(X ≤ 6) ≈ 0.596.
To find the probability that the waiting time is more than 6 seconds (P(X > 6)), we can subtract the probability of X ≤ 6 from 1:
P(X > 6) = 1 - P(X ≤ 6) ≈ 1 - 0.596 ≈ 0.404.
(b) To calculate the probability that the waiting time is between 4 and 8 seconds, we need to integrate the PDF from 4 to 8:
P(4 ≤ X ≤ 8) = \(\int\limits^4_8 {0.55e^{(-0.55(x-1)} } \, dx\)
Evaluating the integral, we find P(4 ≤ X ≤ 8) ≈ 0.336.
Therefore, the probability that the waiting time at the median line is at most 6 seconds is approximately 0.596, the probability of it being more than 6 seconds is approximately 0.404, and the probability of the waiting time being between 4 and 8 seconds is approximately 0.336.
Learn more about probability here:
brainly.com/question/31828911
#SPJ11
3x +4= 9x + 3 I need help PLEASEEE
Answer:
x=-1/6
I luv u
X=
2x 10,
4
10
How do i find x?
Answer:Solve for x 2x-4=10 2x − 4 = 10 2 x - 4 = 10 Move all terms not containing x x to the right side of the equation. Tap for more steps... 2x = 14 2 x = 14 Divide each term in
Step-by-step explanation:
Select the correct answer. Which expression is equivalent to 18x^2 14^8 ÷ 6 7x^4
The equivalent expression for the given expression is 3x⁴√2.
What are equivalent expressions?An expression is formed by using the variables, coefficients and constants that represents an arithemtic operation.
Two or more equations that have the same values on simplifying are said to be equivalent expressions.
Calculation:The given expression is 18x²\(\sqrt{14x^8}\) ÷ 6\(\sqrt{7x^4}\)
On simplifying, we get
18x²\(\sqrt{14x^8}\) ÷ 6\(\sqrt{7x^4}\) = 18x²\(\sqrt{14(x^4)^2}\) ÷ 6\(\sqrt{7(x^2)^2}\)
⇒ (18x² × x⁴ × √14) ÷ (6 × x² × √7)
⇒ (18 × x⁶ × √2× √7)/(6 × x² × √7)
⇒ 3x⁴√2
Therefore, the equivalent expression for the given expression is 3x⁴√2.
Learn more about the equivalent expression here:
https://brainly.com/question/4348710
#SPJ1
-6x - 42= –10x + 62
X =
\( - 6x - 42 = - 10x + 62\)
Add sides 42
\( - 6x - 42 + 42 = - 10x + 62 + 42 \\ \)
\( - 6x = - 10x + 104\)
Add sides 10x
\( 10x - 6x =10x - 10x + 104 \)
\(4x = 104\)
Divided sides by 4
\( \frac{4}{4}x = \frac{104}{4} \\ \)
\(x = 26\)
_________________________________
Done ♥️♥️♥️♥️♥️