Answer:
2z+6
Step-by-step explanation:
you just multiply the z and 3 by 2.
Answer:
2z + 6
Step-by-step explanation:
a(b+c) = ab + ac
2(z+3) expanded is
2(z+3) = 2z + 6
The area of a regular hexagon inscribed in a circle with radius 5 is what . Round your answer to the nearest whole number.
Answer:
Area of regular hexagon inscribed in circle = 64.95
Step-by-step explanation:
Given:
Radius = 5 unit
Find:
Area of regular hexagon inscribed in circle
Computation:
Area of regular hexagon inscribed in circle = 6[1/2][r²sin60]
Area of regular hexagon inscribed in circle = 6[1/2][5²(0.866)]
Area of regular hexagon inscribed in circle = 64.95
a small book publisher knows that 15 books weigh 29 lbs. How much do 31 books weigh?
Answer:
I believe the answer would be 59.93333
7/8-5/9 equals what?
Answer:
23/72 or .3194
Step-by-step explanation:
Answer:
0.31944444444
Step-by-step explanation:
Suppose you deposit 900 dollars into a bank with 5% simple interest. The amount in the account after t years is given by A(t)=900(1.05)t (in dollars).
1. What is the average rate of change for the first year? Rate (in dollars per year): 900(1.05)-900
2. What is the average rate of change for the first five years? Rate (in dollars per year):
3. What is the average rate of change for the first ten years? Rate (in dollars per year):
4. Does the average rate of change increase or decrease as time from the initial deposit gets longer?
Answer:
1. 45 dollars per year.
2. 49.73 dollars per year.
3. 56.6 dollars per year.
4. Increases
Step-by-step explanation:
Average rate of change
The average rate of change of a function \(f(x)\) over an interval [a,b] is given by:
\(A = \frac{f(b)-f(a)}{b-a}\)
In this question, we have that:
\(A(t) = 900(1.05)^t\)
1. What is the average rate of change for the first year?
\(A(0) = 900(1.05)^0 = 900\)
\(A(1) = 900(1.05)^1 = 945\)
So
\(A = \frac{A(1)-A(0)}{1-0} = \frac{945-900}{1-0} = 45\)
45 dollars per year.
2. What is the average rate of change for the first five years?
\(A(0) = 900(1.05)^0 = 900\)
\(A(5) = 900(1.05)^5 = 1148.65\)
\(A = \frac{A(5)-A(0)}{5-0} = \frac{1148.65-900}{5-0} = 49.73\)
49.73 dollars per year.
3. What is the average rate of change for the first ten years?
\(A(0) = 900(1.05)^0 = 900\)
\(A(10) = 900(1.05)^{10} = 1466\)
\(A = \frac{A(10)-A(0)}{10-0} = \frac{1466-900}{10-0} = 56.6\)
56.6 dollars per year.
4. Does the average rate of change increase or decrease as time from the initial deposit gets longer?
From the previous items, it increases.
Roberto evaluated 34 ÷ 45 and got an answer of 1516. Which statement is true about his answer? Whoever get it right and helps me get brainllest pls
Answer:
roberto is not smart
Step-by-step explanation:
34/45 is 0.75555555555 or 0.75 or .75
ur welcome
25 POINTS PLS HELP SOME1!!
The transformation from the graph of f(x) = x to the graph of g(x) = (1/9)·x -2, is a rotation and a translation. The correct option is therefore;
The transformation are a rotation and a translation
What is a translation transformation?A translation transformation is a transformation in which there is a displacement of all points on the preimage figure in a specified direction.
The transformation from f(x) = x to f(x) = (1/9)·x - 2, includes a slope reduction by a factor of (1/9), or rotating the graph of f(x) = x in the clockwise direction, and a translation of 2 units downwards, such that the y-intercept changes from 0 in the parent function, f(x) = x to -2 in the specified function f(x) = (1/9)·x - 2, therefore, the translation includes a rotation clockwise and a translation downwards by two units
The correct option is the second option; The transformation are a rotation and a translation
Learn more on rotation transformation here: https://brainly.com/question/29022349
#SPJ1
-8m+28=156-12m please help me !!!!
Answer:
pls mark as brainliest :)
m=32
Select the correct answer. Maria donates a fixed amount, a, to a charity each month. If she donates $300 in 12 months, what is the equation for a? A. a + 300 = 12 B. a × 300 = 12 C. a × 12 = 300 D. a + 12 = 300 E. a + 32 = 100
Answer: C
she donates a for 12 months, the 12 in the a * 12=300. the a is the fixed amount, meaning she will donate a 12 times in a year.
El valor de las variables
Answer:
25 / 2
Step-by-step explanation:
Find ( D × \(\frac{E}{F}\) ) if D = 5, E = 10, F = 4
5 × \(\frac{10}{4}\) = 25 / 2
Hi, can you help me answer this question please, thank you!
given the information on the picture, since we have that n*p is greater than 10, we can use a normal distribution.
We have that the critical value for 99% confidence level is 2.58.
Next, we can find the Standard Error with the following expression:
\(SE=\sqrt[]{\frac{p(1-p)}{n}}\)in this case we have the following:
\(SE=\sqrt[]{\frac{0.6\cdot0.4}{160}}=00387\)then, according to the margin of error formula:
\(ME=CV\cdot SE\)where CV is the critical value, we get:
\(ME=2.58\cdot0.0387=0.099\)therefore, the margin of error is 0.099 which is a 9.9% error
i need help with somr questions
To solve the exercise, first we are going to write the composition of the functions:
\(\begin{gathered} \text{ Given two functions }f(x)\text{ and }g(x)\colon \\ f\lbrack g(x)\rbrack=(f\circ g)(x) \end{gathered}\)It reads "f composed of g", simply said "we are going to fill f with g":
So, in this case, we have
\(\begin{gathered} f(x)=\frac{48}{x^2}-\frac{12}{x}+1 \\ g(x)=2x \\ f\lbrack g(x)\rbrack=\frac{48}{(2x)^2}-\frac{12}{2x}+1 \\ f\lbrack g(x)\rbrack=\frac{48}{4x^2}-\frac{12}{2x}+1 \\ \text{ Simplifying} \\ f\lbrack g(x)\rbrack=\frac{12}{x^2}-\frac{6}{x}+1 \end{gathered}\)Now, we evaluate, that is, we replace x = 2 in the composite function and operate
\(\begin{gathered} f\lbrack g(2)\rbrack=\frac{12}{(-2)^2}-\frac{6}{-2}+1 \\ f\lbrack g(2)\rbrack=\frac{12}{4}+3+1 \\ f\lbrack g(2)\rbrack=3+3+1 \end{gathered}\)Therefore,
\(f\lbrack g(2)\rbrack=7\)evaluate 2b^3 where b = 3
Answer:
Answer=54
Step-by-step explanation:
Given:- b=3
2b³
Solution:-
2 x b³
2 x 3 x 3 x 3
6 x 9
54 (answer)
Hope this helps you
Have a good day.
solve 3(x+4)-11=28 please
Answer:
\(\huge\boxed{\sf x = 9}\)
Step-by-step explanation:
Given equation:3(x + 4) - 11 = 28
Add 28 to both sides3(x + 4) = 28 + 11
3(x + 4) = 39
Distribute3x + 12 = 39
Subtract 12 from both sides3x = 39 - 12
3x = 27
Divide both sides by 3x = 27/3
x = 9\(\rule[225]{225}{2}\)
Is 4 – 2n = 5-1 +1 a one solution or a no solution or is it a real number
Step-by-step explanation:
4-2n=5-1+1
+2n. +2n
4=5-1+1+2n
4=5+2n
- 5. -5
-1=2n
-0.5=n
Answer: One solution.
n=-1/2
Step-by-step explanation: 4−2n=5−1+1 4+−2n=5+−1+1 −2n+4=(5+−1+1) −2n+4-4=5-4 −2n/-2=1/-2 n=-1/2
Suppose a researcher wants to use a confidence interval to estimate an unknown population proportion p. Which of the following is not a correct statement?
Answer choices:
A. The endpoints of the interval can vary with each new sample.
B. The probability that p is in the interval is equal to the level of confidence for the interval.
C. Whether the interval captures p is not known with certainty.
D. The population proportion p is fixed, but the sample proportion pˆ can vary from sample to sample.
E. The interval either does or does not capture p.
Using probability the correct option is B)The probability that p is in the interval is equal to the level of confidence for the interval.
What is probability?
Probability is a way to gauge how likely something is to happen. Many things are difficult to forecast with absolute confidence. Using it, we can only make predictions about the likelihood of an event happening, or how likely it is. Probability can range from 0 to 1, with 0 denoting an impossibility and 1 denoting a certainty. For pupils in Class 10, probability is a crucial subject because it teaches all the fundamental ideas of the subject. One is the probability of every event in a sample space.
The probability that p is in the interval is equal to the level of confidence for the interval.
Reason -
There is a 95% probability that the interval between X [lower bound] and Y [upper bound] contains the true value of the population parameter. The statement above is the most common misconception about confidence interval. After the statistical interval is calculated, the interval can only either contain the population parameter or not.
Hence the correct option is B) The probability that p is in the interval is equal to the level of confidence for the interval.
To learn more about probability refer the below link
https://brainly.com/question/13604758
#SPJ4
a group of 8 friends go out to pizza. each person will buy a soda and 2 slices of pizza. Let s represent the cost of sodas and p represent the cost of pizza slices
Answer:
Step-by-step explanation:
If I'm not mistaken you're looking for an equation, if not then comment below...
y = 8s + 16p
Since there's 8 of them, they'll get 8 sodas total and 16 sliced of pizza total.
What’s the answer to If =3+23
, what is
when =1
and =2
?
The value of y when a = 1 and b = 2 is 22.
How to solve an equation?The equation of can be solved as follows: We will substitute the value of a and b in the equation to find the value of y.
Therefore,
y = 3ab + 2b³
Let's find y when a = 1 and b = 2
Hence,
y = 3(1)(2) + 2(2)³
y = 6 + 2(8)
y = 22
Therefore,
y = 22
learn more on equation here: https://brainly.com/question/29663159
#SPJ1
will give BRAINLEST! See image attached below.
Answer:
See the image below for answer:)
Step-by-step explanation:
Answer:
B. (1 ± sqrt(33)) / 4
Step-by-step explanation:
the 2 solutions for a quadratic equation
ax² + bx + c = 0
are defined as
x = (-b ± sqrt(b² - 4ac)) / 2a
in our example here we have
a = -2
b = 1
c = 4
=>
x = (-1 ± sqrt(1 + 32)) / -4 = (1 ± sqrt(33)) / 4
as we can easily divide top and bottom by -1 to turn the -1 and -4 into positive numbers, and the second top part, the square root, is a ± factor anyway. just withing the sign dues not change the fact that is is still a ± factor (both signs apply).
and now it is clear, it has to be option B.
the others disqualify because they have either no division by any form of 4, or the "1" and the "4" have different signs. but our equation shows they need to have equal signs (either both negative or both positive).
Which one of the following suggests that the data set is approximately normal?
a. A data set with 14, 68, and s41.
b. A data set with 1330, 2940, and s2440.
c. A data set with 2.2, 7.3, and s2.1.
d. A data set with 105, 270, and s33.
Answer:
a. A data set with 14, 68, and s41.
Step-by-step explanation:
For a normally distributed data set; Q₁ and Q₃ will be 0.6745 × 2 = 1.349 standard deviation.
The interquartile range IQR = Q₃ - Q₁ = 1.349 × \({\sigma}\)
Q₁ Q₃ \({\sigma}\) IQR = Q₃ - Q₁ 1.349 × \({\sigma}\)
a. 14 68 41 = 68 - 14 1.349 × 41
= 54 = 55.309
b. 1330 2940 2440 = 2940 - 1330 1.349 × 2440
= 1610 = 3291.56
c. 2.2 7.3 2.1 = 7.3 - 2.2 1.349 × 2.1
= 5.1 = 2.8329
d. 105 270 33 = 270 - 105 1.349 × 33
= 165 = 44.517
From the above calculation, we will see that option a have a data set that is approximately normal.
Hash 1 has an input data which is 2 characters long while Hash 2 has an input data which is 300000 characters long. Choose the correct option
The correct option on Hash 1 and Hash 2 is C. Hash 1 is designed to work with small input data, while Hash 2 is optimized for processing large input data.
What is the difference between Hash 1 and Hash 2 ?The main difference between Hash 1 and Hash 2 is the amount of input data they can process. Hash 1 can process input data that is 2 characters long, while Hash 2 can handle input data that is up to 300,000 characters long. This means that Hash 2 is better suited for processing larger datasets than Hash 1.
In terms of which hash function is better suited for different types of data, it depends on the specific application and the characteristics of the data being processed. For example, if the data being hashed is small and of low complexity, Hash 1 may be a good choice due to its speed and simplicity.
Find out more on Hash at https://brainly.com/question/13068609
#SPJ1
The options for this question include:
Hash 1 is designed to work with large input data, while Hash 2 is optimized for processing small input data.Hash 1 is designed to work with small input data, while Hash 2 is optimized for processing small input data. Hash 1 is designed to work with small input data, while Hash 2 is optimized for processing large input data.Hash 1 is designed to work with large input data, while Hash 2 is optimized for processing large input data.5. What is the area of a rectangle with a length of x-a and a width of x + b? (A) x²-a² (B) x² + b² (C) x² - abx + ab (D) x²-ax-bx - ab (E) x² + bx - ax - ab
'x^2+bx-ax-ab' is the area of a rectangle with a length of x-a and a width of x + b.
What is area of rectangle?
A rectangle basically is a four-sided shape with four right angles. It is one of the most basic shapes in geometry and can be defined by its length and width. The area of a rectangle is the product of its length and width. This measure is typically expressed in square units, such as square feet or square meters. The area of a rectangle can also be found by multiplying the length and width of a given rectangle.
L=x-a
B=x+b
Area of rectangle=?
Area of rectangle=l*b
=(x-a)(x+b)
=x² + bx - ax - ab
Hence, the correct option is Option (E) x² + bx - ax - ab.
Learn more about rectangle here:
https://brainly.com/question/12190011
#SPJ1
What does g =???
2/5g = 5
A school has 100 windows. On a cool day, 95 of the windows were closed. Which decimal represents how many of the windows were open? *
Answer: 0.05
Step-by-step explanation:
Since 95 out of 100 were closed, the closed window is 95% = 0.95.
5 open windows = 5% = 0.05
PLEASE HELP
List the key features of the quadratic function y = x2 + 6x – 16.
Question 1 options:
A)
x-intercepts: (–8,0) and (2,0), y-intercept: (0,–6), vertex (–3,–25).
B)
x-intercepts: (–8,0) and (2,0), y-intercept: (0,16), vertex: (–3,–25).
C)
x-intercepts: (8,0) and (–2,0), y-intercept: (0,–16), vertex: (–3,–25).
D)
x-intercepts: (–8,0) and (2,0), y-intercept: (0,–16), vertex: (–3,–25).
Sarah predicted that she could text 80 words
per minute on her phone. However, she only
texted 52 words per minute. What was Sarah's
percent error?
Prediction Actual |
| Actual |
Round to the nearest percent.
Hint: Percent error =
-
x 100
Answer:
20
Step-by-step explanation:
percentage error = predictions - actual ÷actual × 100
error
\( \frac{82 - 52 \\ }{52} \times 100\)
=
20
find the measure of the arc or angle indicated by ?
the specific problem you're trying to solve, such as the type of geometric shape, any given angles, or other measurements. Please provide these details so that I can assist you accurately.
To give you an idea of the process, here are the general steps to find the measure of an arc or angle in different types of geometric shapes:
1. Identify the shape and its properties: Determine whether the shape is a circle, triangle, quadrilateral, or another type of polygon.
2. Use the properties of the shape: For circles, use properties of arcs, central angles, and inscribed angles. For triangles, use angle sum properties or angle relationships. For quadrilaterals, use properties like angle sums, parallel lines, or diagonals.
3. Apply relevant formulas: Depending on the shape and given information, apply appropriate formulas such as the arc length formula, the circle's circumference, or triangle angle sum theorem.
for such more questions on arc or angle
https://brainly.com/question/30286854
#SPJ11
Number of Computers
72
60
48
36
24
12
V
1 2 3 4 5 6 7 8 9 10 11 12
Number of Days
The graph shows a proportional relationship between
the number of computers produced at a factory per day.
In three days, 36 computers are produced; 48
computers are produced in 4 days; and 60 computers
are produced in 5 days.
Find the unit rate of computers per day using the graph.
Unit rate:
computers per day
The unit rate of computers per day using the graph is that 12 computers are made per day.
What is a unit rate?The unit rate is how many units of quantity correspond to the single unit of another quantity. We say that when the denominator in rate is 1, it is called unit rate. Unit rates is said to be the amount of something in each unit or per unit.
How to find the unit rate of computers per dayTo obtain the unit rate of computers sold per day using the graph, we need to obtain the slope of the graph, which is the change in y per change in x
So, it is given by:
\(\text{Slope} = \dfrac{\text{change in y}}{\text{change in x}}\)
\(\text{Slope} = \dfrac{\text{y}_2-\text{y}_1}{\text{x}_2-\text{x}_1}\)
\(\text{y}_2 = 60 , \ \text{y}_1 = 36 , \ \text{x}_2 = 5, \ \text{x}_1 = 3.\)
\(\text{Slope} = \dfrac{(60 - 36)}{(5 - 3)} = \dfrac{24}{2} = 12\)
\(\bold{Slope = 12}\)
Unit rate = 12 computers per day.
The attachment of the graph is given below.
Therefore, the unit rate of computers per day is 12.
Learn more about the unit rate at:
https://brainly.com/question/28572142
A garden is to designed with a rectangular part in the middle with two semi-circles on the ends.
The dimensions of the rectangular portion are 18.4 feet long and 8.6 feet wide.
a) What is the area of one semi-circle at one end?
b) What is the area of the garden?
c) Find the area in square metres.
Given statement solution is :- a) The area of one semi-circle at one end is 58.09 square feet.
b) The area of the garden is 274.42 square feet.
c) The area in square metres is approximately 58.09 square feet.
The area of the garden is approximately 274.42 square feet, and the area in square meters is approximately 25.49 square meters.
a) To find the area of one semi-circle at one end, we need to calculate the area of a complete circle and then divide it by 2. The formula for the area of a circle is A = πr², where A represents the area and r is the radius.
Since the diameter of the semi-circle is equal to the width of the rectangular portion, which is 8.6 feet, the radius will be half of that, which is 8.6 / 2 = 4.3 feet.
Now we can calculate the area of the semi-circle:
A = (π * 4.3²) / 2
A ≈ 58.09 square feet
b) To find the area of the garden, we need to sum the area of the rectangular portion with the areas of the two semi-circles.
Area of the rectangular portion = length * width
Area of the rectangular portion = 18.4 feet * 8.6 feet
Area of the rectangular portion ≈ 158.24 square feet
Area of the two semi-circles = 2 * (area of one semi-circle)
Area of the two semi-circles ≈ 2 * 58.09 square feet
Area of the two semi-circles ≈ 116.18 square feet
Total area of the garden = area of the rectangular portion + area of the two semi-circles
Total area of the garden ≈ 158.24 square feet + 116.18 square feet
Total area of the garden ≈ 274.42 square feet
c) To convert the area from square feet to square meters, we need to know the conversion factor. Since 1 foot is approximately 0.3048 meters, we can use this conversion factor to convert the area.
Area in square meters = Total area of the garden * (0.3048)²
Area in square meters ≈ 274.42 square feet * 0.3048²
Area in square meters ≈ 25.49 square meters
Therefore, the area of one semi-circle at one end is approximately 58.09 square feet. The area of the garden is approximately 274.42 square feet, and the area in square meters is approximately 25.49 square meters.
For such more questions on Garden Area Calculations
https://brainly.com/question/2516802
#SPJ8
Consider the system of equations.
x-3y = 9
1/5 x - 2y = -1
Which number can be multiplied by the second equation to eliminate the x-variable when the equations are added
together?
Given:
The system of equations:
\(x-3y=9\)
\(\dfrac{1}{5}x-2y=-1\)
To find:
The number that can be multiplied by the second equation to eliminate the x-variable when the equations are added together.
Solution:
We have,
\(x-3y=9\) ...(i)
\(\dfrac{1}{5}x-2y=-1\) ...(ii)
The coefficient of x in (i) and (ii) are 1 and \(\dfrac{1}{5}\) respectively.
To eliminate the variable x by adding the equations, we need the coefficients of x as the additive inverse of each other, i.e, a and -a So, a+(-a)=0.
It means, we have to convert \(\dfrac{1}{5}\) into -1. It is possible if we multiply the equation (ii) by -5.
On multiplying equation (ii) by -5, we get
\(-x+10y=5\) ...(iii)
On adding (i) and (iii), we get
\(7y=14\)
Here, x is eliminated.
Therefore, the number -5 can be multiplied by the second equation to eliminate the x-variable.
the range of x is the set {0,1,2,3,x}, where x is unknown. if each value is equally likely and the mean of x is 6, determine x.
If each value is equally likely and the mean of x is 6, x = 24.
The arithmetic mean (arithmetic average or simply the mean or average) in statistics is the sum of a collection of numbers divided by the count of numbers in the collection, which is is often a set of results from an experiment, a survey, or observational study.
The arithmetic mean A is defined to be the formula: \(A = \frac{1}{n} \sum_{i=1}^{n} a_i=\frac{a_1+ ... +a_n}{n}\).
We're given a set of {0, 1, 2, 3, x} where x is unknown and the mean of x is 6. In order to find the value of x, we can plug all the known values in the formula first and then we're going to simplify the equation:
\(A = \frac{a_1+...+a_n}{n}\\\\6 = \frac{0+1+2+3+x}{5}\\\\6 = \frac{6+x}{5}\\\\30 = 6 + x\\\\30 - 6 = x\\\\x = 30 - 6\\\\x = 24\)
We've confirmed that x is indeed equal to 24.
Learn more about an example of an arithmetic mean problem at https://brainly.com/question/26088030.
#SPJ4