The garden will stretch by 2/3 miles.
Given that Garden covers an area of 1/6 of a square mile and the garde is 1/4 mile wide.
As we know, the garden is a rectangle shape.
Here, we will use the formula of area of rectangle.
Area of rectangle is equal to the product of length and breadth.
Area =l×b
Here, the give area=1/6 miles² and b=1/4 mile.
Now, we will substitute the values in the formula, we get
1/6=l×(1/4)
Further, we will multiply both sides with 4, we get
4/6=4l/4
4/6=l
Now, we will simplify the left hand side, we get
2/3=l
Hence, the length of garden stretch when garden covers an area of 1/6 of a square mile and 1/4 mile wide is 2/3 mile.
Learn more about the area of rectangle from here brainly.com/question/1549055
#SPJ9
Using the UIP equation, assume that the expected future rate (after one year) for euros (in terms of dollars) equals $1.20, while the current spot rate is 1.15. The current interest rate on euro deposits is 2%, and the interest rate on dollar deposits is 3%. Should you invest in:
a)the US
b) or in Europe?
c)It is indifferent
d)Neither one In Europe In the US
The current interest rate on euro deposits is 2%, and the interest rate on dollar deposits is 3% .You should invent in d)Neither one In Europe In the US.
Using the UIP (Uncovered Interest Parity) equation, we can determine whether it is better to invest in Europe or the US. The expected future exchange rate is $1.20/€, while the current spot rate is $1.15/€. The interest rate on euro deposits is 2%, and the interest rate on dollar deposits is 3%.
The UIP equation is given by:
(Expected future exchange rate - Current spot rate) / Current spot rate = (Interest rate in domestic currency - Interest rate in foreign currency)
In this case, the domestic currency is USD and the foreign currency is EUR. Plugging in the values, we get:
($1.20 - $1.15) / $1.15 = (0.03 - 0.02)
Solving for the equation:
0.0435 ≈ 0.01
The difference in interest rates (1%) is approximately equal to the expected appreciation of the euro against the dollar (4.35%). Therefore, according to the UIP equation, there should be no significant difference between investing in Europe or the US, as the potential returns are nearly equal when considering currency movements and interest rates.
In conclusion, based on the UIP equation, you can choose to invest in either Europe or the US, as the expected returns are similar. However, it is important to consider additional factors, such as risk tolerance and investment objectives, before making a final decision. The correct answer is d.
Know more about interest rates here:
https://brainly.com/question/29415701
#SPJ11
As seen in the diagram below, Julieta is building a walkway with a width of
x feet to go around a swimming pool that measures 11 feet by 8 feet. If the total area of the pool and the walkway will be 460 square feet, how wide should the walkway be?
The answer is: The width of the walkway should be 5 feet.
We are given a diagram below that represents the given data. Julieta is constructing a walkway around a rectangular swimming pool which measures 11 feet by 8 feet.
She wants the total area of the pool and the walkway to be 460 square feet. Our task is to determine the width of the walkway.
Let's assume that the width of the walkway is x feet. Then, the length of the rectangle formed by the walkway and pool together will be 11+2x and the width will be 8+2x.
The area of the rectangle is given as: Area of rectangle = Length × Width⇒(11+2x)×(8+2x) = 460⇒88 + 22x + 16x + 4x² = 460⇒4x² + 38x - 372 = 0 Dividing the entire equation by 2, we get: 2x² + 19x - 186 = 0 To solve this quadratic equation, we will use the quadratic formula: x = [-b ± √(b²-4ac)] / 2awhere a = 2, b = 19, and c = -186.
On substituting these values in the above formula, we get: x = (-19 ± √(19²-4×2×(-186))) / 2×2 Simplifying this expression further, we get: x = (-19 ± √1521) / 4⇒x = (-19 ± 39) / 4⇒x = 5 or x = -9.5
Since the width cannot be negative, the width of the walkway should be 5 feet. Therefore, the answer is: The width of the walkway should be 5 feet.
For more such questions on walkway
https://brainly.com/question/21284095
#SPJ8
Write and equation of the line in slope-intercept form. (0,-2) (1,3)
Please explain
Answer: y = 5x - 2
Step-by-step explanation:
3 - - 2 = 5
1 - 0 = 1
5/1 = 5 M= 5
y = mx+b
3 = 5(1) + b
3 = 5 + b
-5 -5
-2 = b
y = 5x - 2
need this asap 95 points + brainliest if its correct
Answer:
A) (-6, 9) and (22, 9)--------------------------
A horizontal line has a zero slope.It means all the points on a horizontal line have different x-coordinates but same y- coordinates.
Looking at the answer choices we can only see the pairs (-6, 9) and (22, 9) follow this rule. Hence A is the correct choice.
Answer:
(-6, 9) and (22, 9)
Step-by-step explanation:
For a point (x, y):
The first number represents the point's position on the x-axis.The second number represents the point's position on the y-axis.A horizontal line is represented by the equation y = a, where (0, a) is the y-intercept of the line.
Each point on a horizontal line has the same y-value.
Therefore, the only ordered pair that has the same y-value, and therefore lies on a horizontal line is:
(-6, 9) and (22, 9)The equation of the horizontal line that contains the two ordered pairs is y=9.
What will the accumulated amortization of Mila and Dante's $5,000 patent be after seven years, given a $250 amortized expense each year?
A. $1,750
B. $1,800
C. $1,850
D. $1,900
Answer:
The correct answer is option A ($1750)
A Mika rode her bike around a trail in the park.
The trail is 3 miles long. Mika rode around the
trail 4 times. How many miles did she travel in all?
Answer:
12 miles
Step-by-step explanation:
Total miles = Length of trail ×
Number of times she rode
Total miles = 3 miles × 4 times
Total miles = 12 miles
Mika traveled a total of 12 miles.
How do you solve these two problems please explain step by step
Answer:
1) \(x=15, y=41\)
2) \(x=6, y=24\)
Step-by-step explanation:
1)
The two triangles are similar by AA similarity.
That means \(5x-5=4x+10\).
We can add \(5\) to both sides to get \(5x=4x+15\).
We can then subtract \(4x\) from both sides to get \(x=15\).
We know that the \((5x-5)+(6y-4)=180\) because they both lie on a straight line.
We can plug in for \(x\) to get \((5(15)-5)+(6y-4)=75-5+6y-4=6y-66=180\).
We can divide both sides of the equation by \(6\) to get \(y-11=30\).
We then add \(11\) to both sides to get \(y=41\).
So, \(\boxed{x=15, y=41}\) and we're done!
2)
Because the two bases of a trapezoid are parallel, meaning adjacent top and bottom angles sum to \(180^{\circ}\), we have that \(90+3y+18=180\).
We can subtract a \(90\) and an \(18\) from both sides to get \(3y=72\).
We then divide both sides of the equation by \(3\) to get \(y=24\).
We do the same thing for \(x\). On the other side of the trapezoid, we have that \(15x+30+10x=180\).
We combine like terms on the left side to get \(25x+30=180\).
We subtract a \(30\) from both sides to get \(25x=150\).
We divide both sides of the equation to get \(x=6\).
So, \(\boxed{x=6, y=24}\) and we're done!
for the given composite function, identify the inner function, u = g(x), and the outer function, y = f(u). (use non-identity functions for f(u) and g(x).) y = 3√1+8x
(f(u), g(x)) =_____
find the derivative dy/dx =___
The derivative of the composite function y = 3√(1 + 8x) with respect to x is dy/dx = \(12(1 + 8x)^(-1/2).\)
How the derivative of the composite function is dy/dx = 12(1 + 8x)^(-1/2)?The given composite function is:
y = f(u), where u = g(x)
y = 3√(1 + 8x)
Here, f(u) is the outer function and g(x) is the inner function.
f(u) = 3√(1 + u)
g(x) = 1 + 8x
To find the derivative dy/dx, we can use the chain rule:
(dy/dx) = (dy/du)× (du/dx)
where (dy/du) is the derivative of the outer function f(u) and (du/dx) is the derivative of the inner function g(x).
(dy/du) = d/d(u) (3√(1 + u))
=
(du/dx) = d/d(x) (1 + 8x)
= 8
Now, we can substitute these values in the chain rule formula:
(dy/dx) = (dy/du) × (du/dx)
=\((3/2)× (1 + u)^(-1/2) × 8\)
= \(12(1 + 8x)^(-1/2)\)
Therefore, the derivative of the composite function y = 3√(1 + 8x) with respect to x is dy/dx = \(12(1 + 8x)^(-1/2).\)
Learn more about derivative
brainly.com/question/30365299
#SPJ11
Solve for missing sides:
b
60°
a
5√3
Answer:
b = 5, a = 10.
Step-by-step explanation:
sin 60 = 5√3 / a
√3/2 = 5√3 / a
a = 5√3 / √3/2
= 5√3 * 2/ √3
= 10
By pythagoras:
10^2 = (5√3)^ 2 + b^2
100 = 75 + b^2
b^2 = 25
b = 5
Suppose there are 5 faulty products out of 100 products in a palette in a factory floor. A Quality Engineer pulls 5 products from the palette, randomly. And He/She doesn't put them back to the palette. a. Which distribution this experiment fits into and why? (5pt) b. What is the probability of finding no faulty parts? (5pt) What is the probability of finding two faulty products? (5pt) C.
a. The experiment fits into the Hypergeometric distribution.
b. The probability of finding no faulty parts is 0.0746 or 7.46%.
c. The probability of finding two faulty products is 0.4336 or 43.36%.
a. The experiment fits into the Hypergeometric distribution because it involves sampling without replacement from a finite population (100 products) that contains both defective (5 faulty products) and non-defective items (95 non-faulty products). The Hypergeometric distribution is appropriate when the sampling is done without replacement and the population size is small relative to the sample size.
b. To calculate the probability of finding no faulty parts, we use the Hypergeometric distribution formula:
P(X = 0) = (C(5, 0) * C(95, 5)) / C(100, 5)
where C(n, r) represents the combination function.
Calculating this formula, we find:
P(X = 0) = (1 * 1,221) / 75,287 = 0.0162 ≈ 0.0746 or 7.46%.
c. To calculate the probability of finding two faulty products, we again use the Hypergeometric distribution formula:
P(X = 2) = (C(5, 2) * C(95, 3)) / C(100, 5)
Calculating this formula, we find:
P(X = 2) = (10 * 14,070) / 75,287 = 0.2088 ≈ 0.4336 or 43.36%.
a. The experiment fits into the Hypergeometric distribution because it involves sampling without replacement from a finite population.
b. The probability of finding no faulty parts is approximately 0.0746 or 7.46%.
c. The probability of finding two faulty products is approximately 0.4336 or 43.36%.
To know more about probability visit:
https://brainly.com/question/13604758
#SPJ11
A cylinder with 1/4 of a section removed has a radius of 4 cm for the base and a height of 10 cm.
Determine the approximate volume of the solid. Use 3.14 for pi. cm3
Answer:
Volume of the solid is 377 cm³.
Step-by-step explanation:
Volume of the cylinder = \(\pi r^{2}h\)
Here, r = radius of the cylinder
h = Height of the cylinder
By substituting the values in the formula, (r = 4 cm and h = 10 cm)
Volume of the cylinder = \(\pi (4)^2(10)\)
= 160π
Since one fourth of the cylinder is removed,
Volume of the remaining cylinder = 160π - \(\frac{160\pi }{4}\)
= 160π - 40π
= 120π
= 120(3.14)
= 376.8 cm³
≈ 377 cm³
Volume of the solid is 377 cm³.
use synthetic division to find the result when 2x^3+9x^2+16x+18 is divided by x+1. if there is a remainder,express the result form q(x) +r(x)/b(x)
Answer:
q(x) = 2x² +7x +9
r(x) = 9
b(x) = x+1
Step-by-step explanation:
(2x^3+9x^2+16x+18) / (x+1) = 2x² +7x +9 + (9) / (x+1)
-1 | 2 9 16 18
↓ -2 -7 -9
--------------------
2 7 9 9
x² x .. R
A ball was dropped from a building and reached the ground in 4.20s. Show the equations that you use and all calculation to get credit. a) How fast was it going when it hit the ground? b) How much was the height of the building? c) How much is the acceleration of the ball? Give both magnitude and direction (up or down). Explain 2. A ball is thrown up and it takes 7.40 seconds to reach maximum height. Show the equation that you use to get credit. a) How fast was it going when I threw it? b) How high up did it go? d) What was the acceleration of the ball going up? Give both magnitude and direction (up or down). Explain. e) What was the acceleration of the ball going down? Give both magnitude and direction (up or down). Explain. f) When was the ball speeding up and when was it slowing down? Explain.
a) To find out the speed at which the ball hit the ground, we can use the formula v = u + gt, where v is the final velocity, u is the initial velocity, g is the acceleration due to gravity, and t is the time taken.
Given that the ball was dropped, the initial velocity u is 0. Therefore, the equation simplifies to v = gt.
Using the value of g as 9.8 m/s² and the time taken as 4.2 seconds, we can calculate the final velocity:
v = 9.8 m/s² × 4.2 s = 41.16 m/s.
So, the ball was moving at a speed of 41.16 m/s when it hit the ground.
b) To find the height of the building, we can use the formula h = (1/2)gt², where h is the height, g is the acceleration due to gravity, and t is the time taken for the ball to fall.
Plugging in the values, we get:
h = (1/2) × 9.8 m/s² × (4.2 s)² ≈ 87.15 m.
Rounded to two decimal places, the height of the building is approximately 87.15 m.
c) The acceleration of the ball is the acceleration due to gravity, which is always directed downwards towards the center of the Earth. Its magnitude is 9.8 m/s², meaning that every second, the ball's speed increases by 9.8 m/s in the downward direction. Therefore, the acceleration of the ball is 9.8 m/s² downwards.
2. a) To find the initial velocity of the ball, we can use the equation v = u + gt.
b) To find the maximum height of the ball, we can use the formula h = (1/2)gt², where h is the height, g is the acceleration due to gravity, and t is the time taken for the ball to reach the maximum height.
c) The acceleration of the ball going up is still the acceleration due to gravity, which is always directed downwards towards the center of the Earth. However, since the ball is moving upwards, the acceleration is negative. Therefore, the acceleration of the ball going up is -9.8 m/s².
d) The acceleration of the ball going down is the acceleration due to gravity, which is always directed downwards towards the center of the Earth. Its magnitude is 9.8 m/s², and since the ball is moving downwards, the acceleration is positive. Therefore, the acceleration of the ball going down is +9.8 m/s².
e) The ball is slowing down when it reaches the maximum height because it momentarily stops before starting to fall down. At the maximum height, the ball's velocity is zero, and therefore, its acceleration is also zero. The ball is speeding up when it is thrown upwards and when it is falling down because its velocity is increasing in both cases.
Learn more about speed from the given link
https://brainly.com/question/6280317
#SPJ11
What are the domain and range of the function represented by the set of ordered pairs? {(–3, 2), (–2, 1), (–1, 0), (0, –1)} 
Lucas spends $83.42 in additional interest and charges on monthly payments as the result of a prior bankruptcy. if lucas been able to save this money for the year and then put it into a savings account earning 1.8% simple interest, how much money could he have in savings after 3 more years? a. $1,649.72 b. $1,055.10 c. $1,019.06 d. $1,001.04
The total amount Lusac have in his savings after 3 more years with 1.8% saving interest is $1055.10.
What is simple interest?Simple interest is the amount charged on the principal amount with a fixed rate of interest for a time period. Simple interest calculated only on the principal amount.
The formula for the simple interest can be given as,
\(I=\dfrac{Prt}{100}\)
Here, (I) is the interest amount earned on the principal amount of (P) with the rate of (r) in the time period of (t).
Lucas spends $83.42 in additional interest and charges on monthly payments as the result of a prior bankruptcy. The amount save in a year (12 months) is,
\(P=83.42\times12\\P=1001.04\)
The interest earned on this principal amount with earning 1.8% simple interest, after 3 years is,
\(I=\dfrac{1001.04\times1.83}{100}\\I=54.06\)
The total total amount in his bank account after 3 years is,
\(A=P+I\\A=1001.04+54.06\\A=1055.10\)
Hence, the total amount Lusac have in his savings after 3 more years with 1.8% saving interest is $1055.10.
Learn more about the simple interest here;
https://brainly.com/question/2294792
Answer:
b.
$1,055.10
Step-by-step explanation:
right on edg 22
What is the measure of ZRST shown in the diagram below?
153
a
25%
R
A. 64°
B. 56°
C. 68°
D. 60°
The angle formed by the secant intersection is as follows:
∠RST = 64°
How to find the angle formed by secant intersection?If two secant intersect outside a circle , then the measure of an angle formed by the two lines is one half the positive difference of the measures of the intercepted arcs.
Therefore, using the secant intersection theorem, let's find the angle ∠RST as follows:
∠RST = 1 / 2 (153 - 25)
∠RST = 1 / 2 (128)
∠RST = 64 degrees
Therefore, the unknown angle ∠RST is 64 degrees.
learn more on secant here: brainly.com/question/28523734
#SPJ1
A and B started a business with capital Rs 2500 and 2000. After a year there was a loss of Rs 720 then the loss of A is (a) 450 (b) 400 (c) 320 (d) 500
successful firms must focus on the quality of the products and services they offer. which of the following factors does not contribute to the quest for quality?
a. Global competition
b. Consumer expectations
c. Technological advances
d. All the answer choices are correct
Among the given factors, global competition does not contribute to the quest for quality. The correct answer is Option A.
Why does a successful firm need to focus on quality?In today's business environment, quality has become an important factor that can make or break a company's success. A successful firm must focus on the quality of the products and services they offer, as this can help them maintain their competitive advantage and ensure customer loyalty.
Quality is important for a variety of reasons, including customer satisfaction, reduced costs, increased productivity, and increased revenue. When firms focus on quality, they can provide better products and services to their customers, which can lead to increased customer loyalty and repeat business. This can help firms build a strong reputation in the market and maintain a competitive advantage.
How does global competition contribute to the quest for quality?Global competition has made it necessary for firms to focus on quality to maintain their competitive advantage. When firms face global competition, they need to ensure that their products and services are of high quality to compete effectively in the global market. High-quality products and services can help firms differentiate themselves from their competitors and gain a competitive advantage. This can help firms increase their market share and revenue.
What are the factors that contribute to the quest for quality?Several factors contribute to the quest for quality. These include:
Consumer expectations: Customers have high expectations when it comes to quality. They expect products and services to be of high quality, and they are willing to pay a premium for quality.Technological advances: Technological advances have made it possible for firms to produce high-quality products and services. Firms can use technology to automate production processes, improve quality control, and reduce defects.Global competition: Global competition has made it necessary for firms to focus on quality to maintain their competitive advantage.Regulations: Regulations require firms to meet certain quality standards. Firms that fail to meet these standards can face legal action and damage to their reputation.Learn more about Global competition here: https://brainly.com/question/29479819
#SPJ11
Which statement is true?
Answer: A
Step-by-step explanation:
Square root of 35 is 5.9161
The probability you will make spaghetti for dinner tonight is 0.43. The probability you will make spaghetti and chicken for dinner tonight is 0.36. The probability you will make chicken for dinner tonight is .54. a. Find the probability you will make spaghetti or chicken for dinner tonight.b. Find the probability you will make spaghetti for dinner tonight, given you already made chicken for dinner.
The probability of making spaghetti for dinner tonight, given you already made chicken for dinner, is 0.67.
To find the probability of making spaghetti or chicken for dinner, we need to find the union of the two events.
P(Spaghetti or Chicken) = P(Spaghetti) + P(Chicken) - P(Spaghetti and Chicken)
P(Spaghetti or Chicken) = 0.43 + 0.54 - 0.36 = 0.61
Therefore, the probability of making spaghetti or chicken for dinner tonight is 0.61.b. To find the probability of making spaghetti for dinner tonight, given you already made chicken for dinner, we use conditional probability.
P(Spaghetti | Chicken) = P(Spaghetti and Chicken) / P(Chicken)
We know that P(Chicken) = 0.54 and P(Spaghetti and Chicken) = 0.36.
Therefore,
P(Spaghetti | Chicken) = 0.36 / 0.54 = 0.67
So the probability of making spaghetti for dinner tonight, given you already made chicken for dinner, is 0.67.
To learn more about “probability” refer to the https://brainly.com/question/13604758
#SPJ11
use the kkt
Use the method of steepest ascent to approximate the solution to max z = -(x₁ - 3)² - (x₂ - 2)² s. t. (x₁, x₂) E R²
To approximate the solution and maximize the given objective function we need to find the steepest ascent direction and iteratively update the values of x₁ and x₂ to approach the maximum value of z.
The method of steepest ascent involves finding the direction that leads to the maximum increase in the objective function and updating the values of the decision variables accordingly. In this case, we aim to maximize the objective function z = -(x₁ - 3)² - (x₂ - 2)².
To find the steepest ascent direction, we can take the gradient of the objective function with respect to x₁ and x₂. The gradient represents the direction of the steepest increase in the objective function. In this case, the gradient is given by (∂z/∂x₁, ∂z/∂x₂) = (-2(x₁ - 3), -2(x₂ - 2)).
Starting with initial values for x₁ and x₂, we can update their values iteratively by adding a fraction of the gradient to each variable. The fraction determines the step size or learning rate and should be chosen carefully to ensure convergence to the maximum value of z.
By repeatedly updating the values of x₁ and x₂ in the direction of steepest ascent, we can approach the solution that maximizes the objective function z. The process continues until convergence is achieved or a predefined stopping criterion is met.
Learn more about fraction here:
https://brainly.com/question/10354322
#SPJ11
Which situation would best be represented by positive 6?A. Taking an elevator down 6 floors in a buildingB. Deleting 6 photos from a camera's memory cardC. A plant growing 6 inchesD. A group of 6 students getting off a bus
Given
The situation would best be represented by positive 6
Solution
Let us look at the first option
A. Taking an elevator down 6 floors in a building
Since it is coming down, this situation represents negative 6
B. Deleting 6 photos from a camera's memory card
Since we are removing, it also represent negative 6
C. A plant growing 6 inches
This is increasing and gaining height, so it represent positive 6
D. A group of 6 students getting off a bus
This also is a situation of negative 6, since the students are coming off the vehicle.
Therefore the right option is C
Option C
Zoe earned $482.50 at her job when she worked for 25 hours. What was her hourly wage, in dollars per hour?
Answer:
19.3
Step-by-step explanation:
482.5/25=
19.3
Solve the following homogeneous difference equation with initial conditions: Yn+2 + 4yn+1 + 4y₁ = 0, 2. Solve the following non-homogeneous difference equation with initial conditions: Yo = 0, y₁ = 1 Yn+2Yn+12yn = 8 - 4n, yo = 1, y₁ = -3
The solution to the homogeneous difference equation with initial conditions Yn+2 + 4yn+1 + 4y₁ = 0, Y₀ = 0, Y₁ = 1 is Yn = -n(-2)^n/2.
The solution to the non-homogeneous difference equation with initial conditions Yn+2Yn+12yn = 8 - 4n, Y₀ = 1, Y₁ = -3 is Yn = -n(-2)^n/2 + 8/3.
Solving the homogeneous difference equation with initial conditions:
The given equation is Yn+2 + 4yn+1 + 4y₁ = 0.
To solve the homogeneous difference equation, we assume that the solution has the form Yn = λ^n, where λ is a constant.
Substituting this into the equation, we get:
(λ^n+2) + 4(λ^n+1) + 4(λ^1) = 0
Factoring out λ^n, we have:
λ^n (λ^2 + 4λ + 4) = 0
The characteristic equation is given by λ^2 + 4λ + 4 = 0.
Solving the characteristic equation, we find that it has a repeated root of λ = -2.
Therefore, the general solution for the homogeneous difference equation is:
Yn = c₁(-2)^n + c₂n(-2)^n
Using the initial conditions:
Y₀ = 0 and Y₁ = 1, we can substitute these values to find the values of c₁ and c₂.
When n = 0: c₁ = 0
When n = 1: -2c₁ - 2c₂ = 1
From the second equation, we find c₂ = -1/2.
So, the solution to the homogeneous difference equation with the given initial conditions is:Yn = -n(-2)^n/2
Solving the non-homogeneous difference equation with initial conditions:
The given equation is Yn+2Yn+12yn = 8 - 4n, yo = 1, y₁ = -3.
To solve the non-homogeneous difference equation, we first find the solution to the associated homogeneous equation, which we found in step 1 to be Yn = -n(-2)^n/2.
Next, we assume a particular solution of the form Yn = An + B, where A and B are constants.
Substituting this into the equation, we get:
(A(n+2) + B)(A(n+1) + B) + 12(An + B) = 8 - 4n
Expanding and simplifying, we have:
A^2n^2 + (3A^2 + 2AB)n + A^2 + 3AB + 12An + 3B = 8 - 4n
Comparing coefficients of like terms, we get the following system of equations:
A^2 = 0 (from the n^2 term)
3A^2 + 2AB + 12A = -4 (from the n term)
A^2 + 3AB + 3B = 8 (from the constant term)
Solving this system of equations, we find A = 0 and B = 8/3.
Therefore, the particular solution is Yn = 8/3.
The general solution to the non-homogeneous difference equation is the sum of the particular solution and the homogeneous solution:
Yn = -n(-2)^n/2 + 8/3
Using the initial conditions, we substitute n = 0 and n = 1:
When n = 0: Y₀ = -0(-2)^0/2 + 8/3 = 8/3
When n = 1: Y₁ = -1(-2)^1/2 + 8/3 = -2/3 + 8/3 = 2
Therefore, the solution to the non-homogeneous difference equation with the given initial conditions is:
Yn = -n(-2)^n/2 + 8/3, where Y₀ = 8/3 and Y₁ = 2.
Learn more about constants from the given link:
https://brainly.com/question/31730278
#SPJ11
Find an equation of the tangent line to the curve at the given point. y=sin(sin(x)),(2π,0)
Equation of the tangent line to the curve at the given point. Therefore, the equation of the tangent line to the curve at the point (2π, 0) is y = 0.
Given curve is y = sin(sin x). We need to find the equation of tangent to the curve at the point (2π, 0).We know that the slope of the tangent line to a curve y = f(x) at a point (a, b) is given by the derivative of the function f(x) at that point, i.e., f'(a).
So, to find the slope of the tangent to the curve at the given point, we differentiate the given function y = sin(sin x) with respect to x:dy/dx = cos(sin x) ·
cos x the value of dy/dx at x = 2π is given by:dy/dx |(x=2π) = cos(sin(2π)) · cos(2π) = cos(0) · (-1) = 0
So, the slope of the tangent line to the curve at the point (2π, 0) is 0.Now, we can use the point-slope form of the equation of a line to find the equation of the tangent at (2π, 0):y - y1 = m(x - x1), where (x1, y1) is the point (2π, 0) and m is the slope we just found to be 0.
Substituting the values, we get: y - 0 = 0(x - 2π)y = 0
This is the equation of the tangent line to the curve at the given point (2π, 0).
Learn more about tangent line here:
https://brainly.com/question/31617205
#SPJ11
are (1/5)^2+1 and 2 ×12/25 equal or not? Please help. :(
Answer:
It equal
Step-by-step explanation:
Which of the following would not be used to describe a slope?
steepness of a line.
ratio of rise to run of a line.
ratio of the horizontal change to the vertical change of a line.
Answer:
C: ratio of the horizontal change to the vertical change of a line
Step-by-step explanation:
A and B are correct.
C is incorrect.
Elijah is 2 years less than twice Michael's age. If Elijah is 18, how old is Michael?
1. Stacy's mom is baking treats for Stacy's birthday party. She has 9 eggs to
use for this purpose. A batch of cookies requires one egg and a batch of
brownies requires 2 eggs. How many of each treat can Stacy's mom
bake?
Part A: List three possible combinations of cookies and brownies Stacy's
mom could make for the party.
Part B: Write an inequality to represent the situation.
Part C: Graph the inequality and shade the area where the solutions are.
here is the graph
i learned this in math lol lol
In the morning, Steve drives 4.7 km to his job at the bookstore. After work, he drives 6.3 km to the college where he takes classes. Then he drives 2.6km back home. Which is the best estimate of the distance Steve travels each day? CollegeF 8 kilometersG 10 kilometersH 12 kilometersJ 14 kilometers
ANSWER
14 kilometres
EXPLANATION
Steve drives the following distances everyday:
=> 4.7 km to his job
=> 6.3 km to college
=> 2.6 km back home
To find the best estimate that Steve travels each day, we will round up each term to the nearest whole number then add them up:
4.7 km rounds up to 5 km (7 is greater than 4)
6.3 km rounds down to 6 km (3 is less than 4)
2.6 km rounds up to 3 km
Now, to add them:
(5 + 6 + 3) km
= 14 km
Therefore, the best estimate of the distance that Steve travels every day is 14 kilometres