Answer:
2√34 ≈ 11.66 units
Step-by-step explanation:
The distance between two points is given by the distance formula:
d = √((x2 -x1)² +(y2 -y1)²)
__
For your points, the distance is ...
d = √((3 -(-7))² +(0 -6)²) = √(10² +(-6)²) = √(100 +36) = 2√34
The distance between the points is ...
2√34 ≈ 11.66 . . . . units
_____
Additional comment
The distance formula is based on the Pythagorean theorem. It models the distance as the hypotenuse of a right triangle whose legs are the differences in x- and y-coordinates of the points.
Find the 9th term of the geometric sequence 8,32,128,
\(\text{First term,}~ a = 8\\\\\text{Common ratio,}~ r= \dfrac{32}8 = 4\\\\\text{nth term} = ar^{n-1} \\\\\text{9th term} = 8\cdot 4^{9-1}\\\\\\~~~~~~~~~~~~~=8 \cdot 4^8\\\\\\~~~~~~~~~~~~~=524288\\\\\text{The 9th of the geometric sequence is 525288.}\)
Which of the following is the point and slope of the equation y - 8 = 4(x + 3)? a. (8, -3), 4 b. (3, -8), 4 c. (-8, 3), 4 d. (-3, 8), 4
Answer:
d
Step-by-step explanation:
This is point-slope form, and these coordinates make both sides equal to 0.
A firm produces 6 shirts at a total cost of $187. The marginal cost of the last shirt is $12. What is the average total cost of producing 5 shirts by the firm?
The average total cost of producing 5 shirts by the firm is $35.
How to find the verage total cost of producing 5 shirts by the firmWe can use the following formula to calculate the average total cost (ATC) of producing 5 shirts:
ATC = Total Cost / Quantity
We know that the firm produces 6 shirts at a total cost of $187, so the total cost of producing 5 shirts can be estimated by subtracting the marginal cost of the last shirt from the total cost of producing 6 shirts:
Total Cost of producing 5 shirts = Total Cost of producing 6 shirts - Marginal Cost of the last shirt
= $187 - $12
= $175
Now we can use the formula to find the average total cost of producing 5 shirts:
ATC = Total Cost / Quantity
= $175 / 5
= $35
Therefore, the average total cost of producing 5 shirts by the firm is $35.
Learn more about average total cost at https://brainly.com/question/29509552
#SPJ1
Carys is checking her tax bill for the last year.
The tax rates were as follows:
• No tax on the first £11 000 of earnings
• Earnings in excess of £11 000 and up to £43 000 taxed at a rate of 20%
• Earnings in excess of £43 000 and up to £150 000 taxed at a rate of 40%
• Earnings over £150 000 taxed at a rate of 45%
Last year, Carys earned £45 600 before tax.
How much tax did she pay in total?
Answer:
$7,440.
Step-by-step explanation:
$0-$11,000 = no tax.
$11,000-$43,000 = 20%.
$43,000-$150,000 = 40%.
The earnings over $150,000 = 45%. etc....
$45,600, = Revenue
Tax is 11000-43000 is = 0.20 * (32000)
= 11000-43000 = 6400
Tax is 43000-45,600 is = 0.40 *(2600)
= 45,600-43000 = 1040
=6400+1040 =7440
f(x)=5x2−3x−1 and g(x)=2x2−x+3
f(x)+g(x)=
Question 18 options:
3x2−4x−4
3x2−2x−4
7x2+4x+3
7x2−4x+2
Answer:
f(x) + g(x) = 7x² - 4x + 2
General Formulas and Concepts:
Algebra I
Combining Like TermsStep-by-step explanation:
Step 1: Define
f(x) = 5x² - 3x - 1
g(x) = 2x² - x + 3
Step 2: Find f(x) + g(x)
Substitute: f(x) + g(x) = 5x² - 3x - 1 + 2x² - x + 3Combine like terms (x²): f(x) + g(x) = 7x² - 3x - 1 - x + 3Combine like terms (x): f(x) + g(x) = 7x² - 4x - 1 + 3Combine like terms (Z): f(x) + g(x) = 7x² - 4x + 2The joint density function of X and Y is f(x,y) = {210 (2x +y), 2
0, otherwise Find
E(X),
E(Y),
E(XY),
E(X2),
E(Y2),
Var(X),
Var(Y),
Cov(X,Y),
i.p
Answer:
e(x)
Step-by-step explanation:
i think this is the answer
The mean cost of a five pound bag of shrimp is 40 dollars with a standard deviation of 8 dollars.
If a sample of 49 bags of shrimp is randomly selected, what is the probability that the sample mean would be less than 37.4 dollars? Round your answer to four decimal places.
Answer:
The mean of the sample distribution of the sample mean is the same as the population mean, which is 40 dollars. The standard deviation of the sample distribution of the sample mean (also called the standard error) is given by:
standard error = standard deviation / sqrt(sample size) = 8 / sqrt(49) = 8 / 7
To find the probability that the sample mean would be less than 37.4 dollars, we need to standardize the sample mean using the standard error and then look up the probability from a standard normal distribution table. The z-score for a sample mean of 37.4 dollars is:
z = (37.4 - 40) / (8 / 7) = -1.225
Looking up this z-score in a standard normal distribution table, we find that the probability of getting a sample mean less than 37.4 dollars is 0.1103 (rounded to four decimal places). Therefore, the probability that the sample mean would be less than 37.4 dollars is 0.1103.
give thanks, your welcome <3
Step-by-step explanation:
The function g is defined by g)2+bx, where b is a constant. If the line tangent to the graph of g at x 1 is parallel to the line that contains the points (0, -2) and (3, 4), what is the value of b ? (A) -1
(B) 2
(C) 5/2
(D) 4
Answer:
The cost per hour for renting the boat is $18 per hour.
A function is said to be linear if it is a straight line graph and it can be represented by the equation:
y = mx + b
where y, x are variables, m is the rate of change and b is the initial value of y.
Let y represent the total cost for renting the boat for x hours.
Given the equation:
y = 18x
Therefore the cost per hour for renting the boat is $18 per hour.
Find out more at: brainly.com/question/21835898
operación de calculo 40+30+18=
40 + 30 + 18
= 70 + 18
= 88
Answer:
88
Step-by-step explanation:
40+30+18=70+18=88
What is the median of this set of data?
66, 51, 77, 68, 60, 75, 54, 80
Order the numbers smallest to largest and go to the middle, the middle number is your answer :)
Step-by-step explanation:
51 ,54 , 60 ,66 ,68 ,70 ,75 ,80
The answer is 67.
Hope this answer will help you.
Urgent help!
QUESTION 1
A fruit basket has both mangoes and oranges and can accommodate only 80 mangoes and oranges when
full. If there are x mangoes in a full basket,
(i) Write an expression for the number of oranges in it.
(ii) If an orange costs 50 cents and a mango costs 40 cents, write an expression for the amount of
money collected (in dollars) for the sale of all the mangoes and oranges in the full basket, S ( x ) .
(iii) Find the total amount collected from selling all the fruits in the full basket if there are 35 mangoes
in it.
Answer:
(i) \(80-x\)
(ii) \(S(x) = 40 - 0.10x\)
(iii) $36.5
Step-by-step explanation:
Given that:
1. Total Number of fruits = 80
2. Number of mangoes = x
3. Both mangoes and oranges are there in the basket.
Solution (i):
Only mangoes and oranges are there in the basket and the basket is full.
so, Number of mangoes + Number of oranges = Total number of fruits
x + Number of oranges = 80
Number of oranges = \(80 -x\)
Solution (ii):
Given:
Cost of an orange = 50 cents = $0.50
Cost of a mango = 40 cents = $0.40
Cost for x mangoes = \(\$ 0.40x\)
Cost for (\(80-x\)) oranges = \(\$ 0.50 \times (80-x)\)
\(\Rightarrow S(x) = 0.50 (80-x) + 0.40x\\\Rightarrow S(x) = 40 -0.50x + 0.40x\\\Rightarrow S(x) = 40 - 0.10x\)
Solution (iii):
Put value of x = 35 in S(x)
\(S(35) = 40 - 0.10 (35)\\\Rightarrow S(35) = 40 - 0.35\\\Rightarrow S(35) =\$ 36.5\)
Hence, answers are:
(i) \(80-x\)
(ii) \(S(x) = 40 - 0.10x\)
(iii) $36.5
Find the volume of the cylinder. Round your answer to the nearest hundredth of a cubic meter.
Answer:
I think that the answer may be volume = 169.65
Step-by-step explanation:
The volume of cylinder whose radius 3m and height 6m is 169.56 cm³ ≈ 170 cm³
What is Volume of Cylinder?The volume of a cylinder is the density of the cylinder which signifies the amount of material it can carry or how much amount of any material can be immersed in it. Cylinder’s volume is given by the formula, π\(r^2h\), where r is the radius of the circular base and h is the height of the cylinder.
Here, Radius of Cylinder = 3 m.
Height of Cylinder = 6 m.
Volume of Cylinder = πr²h
= 3.14 X 3 X 3 X 6
= 169.56 cm³
≈ 170 cm³
Thus, the volume of cylinder whose radius 3m and height 6m is 169.56 cm³ ≈ 170 cm³.
Learn more about Volume of Cylinder from:
https://brainly.com/question/15891031
#SPJ2
A right circular cone is intersected by a plane that passes through the cone's
vertex and is perpendicular to its base, as in the picture below. What is
produced from this intersection?
OA. A pair of parallel lines
B. A single line
OC. A point
OD. A pair of intersecting lines
Answer:
D. A pair of intersecting lines
Step-by-step explanation:
A conic section is a fancy name for a curve that you get when you slice a double cone with a plane. Imagine you have two ice cream cones stuck together at the tips, and you cut them with a knife. Depending on how you cut them, you can get different shapes. These shapes are called conic sections, and they include circles, ellipses, parabolas and hyperbolas. If you cut them right at the tip, you get a point. If you cut them slightly above the tip, you get a line. If you cut them at an angle, you get two lines that cross each other. That's what happened in your question. The plane cut the cone at an angle, so the curve is two intersecting lines. That means the correct answer is D. A pair of intersecting lines.
I hope this helps you ace your math question.
What is the range of f(x) = |x| + 7?
−7 ≤ y < ∞
−∞ < y ≤ −7
0 ≤ y < ∞
7 ≤ y < ∞
When the domain is substituted, the Range of the function will be
7 ≤ y < ∞
How can we find Range ?The range of a function is the the spread of minimum value of the function to maximum value. We can find the range by substituting different domains into the function.
Given a function f(x) = |x| + 7
This |x| show that it is a modulus. That is, the domain will always be positive numerals.
The minimum domain = 0, so the minimum f(x) = 0 + 7 = 7
The maximum domain = ∞, so the maximum f(x) = ∞ + 7 = ∞
y = f(x)
Therefore, the range of of the function f(x) = |x| + 7 will be 7 ≤ y < ∞
Learn more about Range here: https://brainly.com/question/2264373
#SPJ1
What change do you have to make to the graph of f (x) = 7x in order to graph the function g (x) = 7x+10?
To graph the function g(x) = 7x + 10, we shift the graph of f(x) = 7x vertically by adding a constant term of +10. This means every y-coordinate on the graph increases by 10 units. The slope of the line remains the same at 7. The resulting graph is a straight line passing through (0, 10) with a slope of 7.
To graph the function g(x) = 7x + 10, you need to make the following change to the graph of f(x) = 7x:
1. Translation: The graph of f(x) = 7x can be shifted vertically by adding a constant term to the equation. In this case, the constant term is +10.
Here's how you can do it step by step:
1. Start with the graph of f(x) = 7x, which is a straight line passing through the origin (0,0) with a slope of 7.
2. To shift the graph vertically, add the constant term +10 to the equation. Now, the equation becomes g(x) = 7x + 10.
3. The constant term of +10 means that every y-coordinate of the points on the graph will increase by 10 units. For example, the point (0,0) on the original graph will shift to (0,10) on the new graph.
4. Similarly, if you take any other point on the original graph, such as (1,7), the corresponding point on the new graph will be (1,17) since you add 10 to the y-coordinate.
5. Keep in mind that the slope of the line remains the same, as only the y-values are affected. So, the new graph will still have a slope of 7.
By making this change, you will have successfully graphed the function g(x) = 7x + 10.
For more such questions graph,Click on
https://brainly.com/question/19040584
#SPJ8
Line AC and line DB intersect at point P. Solve for angle BPQ.
To earn full credit for presenting and defending your mathematical solution, you must share the equation, show the steps to solving for the variable x, show the steps to solving for angle BPQ.
Answer:
Angle BPQ = 64°
Step-by-step explanation:
4x + 12 +2x = 90
6x + 12 = 90
- 12 -12
6x = 78
x = 13°
BPQ = ((4(13) + 12)°
(52 + 12)°
64°
A positive real number is 4 less than another. When 8 times the larger is added to the square of the smaller, the result is 96. Find the numbers.
Answer:
A positive real number is 4 less than another.
So, the other number is a - 4
When 8 times the larger is added to the square of the smaller, the result is 96.
As a is positive, there is only one solution which is.
=4\square root of (5)
If a different positive real number is 4 smaller than the first. The number 96 is obtained by adding 8 times the bigger to the square of the smaller. The lower number is 4·(√5 - 1), whereas the larger number is 4·√5.
What is the number?A number is a mathematical entity that can be used to count, measure, or name things. For example, 1, 2, 56, etc. are the numbers.
Suppose x represent the large number, the smaller number is obtained s,
= x - 4
From the given condition when 8 times the larger is added to the square of the smaller, the result is 96.
=8 × x + (x - 4)² = 96
=8x + x² - 8x + 16 = 96
=8x - 8x + x² + 16 = 96
=x² + 16 = 96
⇒x² = 96 - 16 = 80
⇒x = ±√(80)
⇒x= ±4·√5
Thus, if a different positive real number is 4 smaller than the first. The number 96 is obtained by adding 8 times the bigger to the square of the smaller. The lower number is 4·(√5 - 1), whereas the larger number is 4·√5.
Learn more about the number here:
brainly.com/question/17429689
#SPJ6
Trey caught a 3 1/4 pound fish. How much did it weigh in ounces?
Answer: 52 ounces
multiply the mass value by 16
answer options are:
A) (3.5, 0.5)
B) (3.6, 1)
C) (4.3, 3)
D) (4.5, 3.5)
answers B and C have a small horizontal line above the x coordinate decimal place. i have no idea what that means.
Answer:
A) (3.5, 0.5)
Step-by-step explanation:
The small horizontal line represents that that digit is repeated to the right of the decimal point ad infinitum. Example would be the decimal equivalent of 1/9 = 0.11111111111... or 0.1 overbar
so 3.6 overbar would be 3.6666666... or 3⅔
and 4.3 overbar would be 4.3333333... or 4⅓
With AB being 3 times longer than BC, the total distance from A to C is 4 units and AB is 3/4 of that distance.
The x value changes -2 units from 5 to 3.
The x value of B is -2(3/4) = - 1.5 from 5 or 3.5
The y value changes -6 units from A to C
The y value of B is -6(3/4) = -4.5 from 5 or 0.5
B = (3.5, 0.5)
f(x)= a(x+p)² +q and g(x)= 0 3 3.1 x + p 1. The turning point of f is (1;4) and the asymptotes of g intersect at the turning point of f. Both graphs cut the y-axic at 3. 3.2 3.3 3.4 a 10 g +94 (1:4) Determine the equation of f Determine the equation of g Determine the coordinates of the x-intercept of g For which values of x will f(x) ≥ g(x)? [9]
Step-by-step explanation:
Let's solve the given questions step by step:
1. Determine the equation of f:
From the given information, we know that the turning point of f is (1, 4). The general form of a quadratic function is f(x) = ax^2 + bx + c. We are given that f(x) = a(x + p)^2 + q, so let's substitute the values:
f(x) = a(x + p)^2 + q
Since the turning point is (1, 4), we can substitute x = 1 and f(x) = 4 into the equation:
4 = a(1 + p)^2 + q
This gives us one equation involving a, p, and q.
2. Determine the equation of g:
The equation of g is given as g(x) = 0.3x + p1.
3. Determine the coordinates of the x-intercept of g:
The x-intercept is the point where the graph of g intersects the x-axis. At this point, the y-coordinate is 0.
Setting g(x) = 0, we can solve for x:
0 = 0.3x + p1
-0.3x = p1
x = -p1/0.3
Therefore, the x-intercept of g is (-p1/0.3, 0).
4. For which values of x will f(x) ≥ g(x)?
To determine the values of x where f(x) is greater than or equal to g(x), we need to compare their expressions.
f(x) = a(x + p)^2 + q
g(x) = 0.3x + p1
We need to find the values of x for which f(x) ≥ g(x):
a(x + p)^2 + q ≥ 0.3x + p1
Simplifying the equation will involve expanding the square and rearranging terms, but since the equation involves variables a, p, and q, we cannot determine the exact values without further information or constraints.
To summarize:
We have determined the equation of f in terms of a, p, and q, and the equation of g in terms of p1. We have also found the coordinates of the x-intercept of g. However, without additional information or constraints, we cannot determine the exact values of a, p, q, or p1, or the values of x for which f(x) ≥ g(x).
if 0 is between 0 and 90 and tan0=7/8 find cos0
Answer:
0.75
Step-by-step explanation:
o = atan ( 7/8 ) = 41.18
cos ( 41.18 ) = 0.75
Answer:
Step-by-step explanation:
Hh
2(cos^4 60 +sin^4 30) -(tan^2 60 +cot^2 45) +3*sec^2 30
The value of the expression \(2(cos^4 60 + sin^4 30) -(tan^2 60 + cot^2 45) + 3\times sec^2 30 is 33/4.\)
Let's simplify the expression step by step:
Recall the values of trigonometric functions for common angles:
cos(60°) = 1/2
sin(30°) = 1/2
tan(60°) = √(3)
cot(45°) = 1
sec(30°) = 2
Substitute the values into the expression:
\(2(cos^4 60 + sin^4 30) - (tan^2 60 + cot^2 45) + 3sec^2 30\)
= \(2((1/2)^4 + (1/2)^4) - (\sqrt{(3)^2 + 1^2} ) + 3(2^2)\)
= 2(1/16 + 1/16) - (3 + 1) + 3*4
= 2(1/8) - 4 + 12
= 1/4 - 4 + 12
= -15/4 + 12
= -15/4 + 48/4
= 33/4
Therefore, the value of the expression \(2(cos^4 60 + sin^4 30) -(tan^2 60 + cot^2 45) + 3\times sec^2 30 is 33/4.\)
for such more question on expression
https://brainly.com/question/4344214
#SPJ8
Two cars are traveling towards a hotel on the same road. From the edge of the hotel, 600 feet high, Spiderman sits on the rooftop thinking about the depression angle needed to reach each car. If the depression angle to the nearest car is 52 degrees, and the depression angle to the farther car is 46 degrees, how far apart must the two cars be from each other?
Make a sketch, solve the problem, and round your answer to the nearest hundredth of a foot.
The two cars must be approximately 177.34 feet apart from each other for Spiderman to have different depression angles to each car.
To find the distance between the two cars, we can use trigonometry and the concept of similar triangles. Let's denote the distance between Spiderman and the nearest car as d1 and the distance between Spiderman and the farther car as d2.
In a right triangle formed by Spiderman, the height of the hotel, and the line of sight to the nearest car, the tangent of the depression angle (52 degrees) can be used:
tan(52) = 600 / d1
Rearranging the equation to solve for d1:
d1 = 600 / tan(52)
Similarly, in the right triangle formed by Spiderman, the height of the hotel, and the line of sight to the farther car, the tangent of the depression angle (46 degrees) can be used:
tan(46) = 600 / d2
Rearranging the equation to solve for d2:
d2 = 600 / tan(46)
Using a calculator, we can compute:
d1 ≈ 504.61 feet
d2 ≈ 681.95 feet
The distance between the two cars is the difference between d2 and d1:
Distance = d2 - d1
Plugging in the values, we have:
Distance ≈ 681.95 - 504.61
Distance ≈ 177.34 feet
For more such question on angles. visit :
https://brainly.com/question/25770607
#SPJ8
1.5 ( x + 3 ) + 3.8 ( 7 x − 2 ) ?
Answer: 28.1x−3.1
Step-by-step explanation: 1.5(x+3)+3.8(7x−2)
=(1.5)(x)+(1.5)(3)+(3.8)(7x)+(3.8)(−2)
=1.5x+4.5+26.6x+−7.6
=(1.5x+26.6x)+(4.5+−7.6)
=28.1x+−3.1
=28.1x−3.1
Write the English phrase as an algebraic expression. Let x represent the number. Simplify the expression, if possible.
6 less than 9 times a number
Answer:
9x - 6
Step-by-step explanation:
9 times a number, x, is written as 9x
“6 less than” means to subtract 6 from something else.
Answer:
Step-by-step explanation:
9x-6
Convert the rectangular coordinates to polar coordinates
(1, -9)
The polar coordinates of (1, -9) are (9.06, -1.47 radians).
To convert from rectangular coordinates to polar coordinates, we can use the following formulas:
r = √(x² + y²)
θ = tan⁻¹(y/x)
where r is the distance from the origin to the point, and θ is the angle between the positive x-axis and the line connecting the origin to the point.
In this case, x = 1 and y = -9. Plugging these values into the formulas, we get:
r = √(1² + (-9)²) = √82 ≈ 9.06
θ = tan⁻¹((-9)/1) ≈ -1.47 radians
Therefore, the polar coordinates of (1, -9) are (9.06, -1.47 radians). The distance from the origin to the point is approximately 9.06 units, and the angle between the positive x-axis and the line connecting the origin to the point is approximately -1.47 radians (or approximately -84.26 degrees).
learn more about polar coordinates here:
https://brainly.com/question/31904915
#SPJ1
Options
- positive
- negative
- 0
-undefined
Write a paragraph proof proving the alternate interior conjectures is true.
Given the question image, we can infer the Alternate interior angles conjecture below using a paragraph proof.
Paragraph proof: The Alternate Interior Angle Conjecture states: "If two parallel lines are intersected by a transversal, then alternate interior angles are congruent."
If 2.22 moles of ammonia (NH3 ) decomposes according to the reaction shown, how many moles of hydrogen (H2 ) are formed? A. 1.11 moles of H2 B. 3.33 moles of H2 C. 6.66 moles of H2 D. 2.22 moles of H2
Answer:
C. 3.33 moles
Step-by-step explanation:
Ammonia decomposes
\(2NH_3\rightarrow N_2+3H_2\)
We have to find the moles of hydrogen formed in 2.22 moles of ammonia.
From the reaction
2 moles of ammonia gives 3 moles of hydrogen
1 mole of ammonia produce hydrogen=3/2 moles
2.22 moles of ammonia produces hydrogen=\(\frac{3}{2}\times 2.22\) moles
Number of moles of hydrogen formed by decomposition of 2.22 moles of ammonia
=\(\frac{6.66}{2}=3.33\)moles
Hence, 3.33 moles of hydrogen are formed in 2.22 moles of ammonia.
Option C is true.
C. 3.33 moles
PLEASE HELP ASAP!!!
The length of ribbons found at a seamstress are listed.
2, 10, 10, 12, 12, 20
What is the appropriate measure of variability for the data shown, and what is its value?
The mean is the best measure of variability and equals 11.
The median is the best measure of variability and equals 11.5.
The range is the best measure of variability and equals 18.
The IQR is the best measure of variability and equals 2.
The appropriate measure of variability for this data set is the IQR, and its value is 2. The mean and median are measures of central tendency, not measures of variability. The range may not be the best measure of variability for this data set because it is influenced by extreme values.
The given data set is:
2, 10, 10, 12, 12, 20
To determine the appropriate measure of variability, we need to consider the spread or dispersion of the data. In this case, we can see that the range,
20 - 2 = 18.
A better measure of variability for this data set is the interquartile range (IQR), which is the range of the middle 50% of the data. To find the IQR, we first need to find the median of the data:
2, 10, 10, 12, 12, 20
The median is the middle value when the data set is arranged in order, which is 11. We can then divide the data set into two halves:
2, 10, 10 and 12, 12, 20
The lower half has a median of 10, and the upper half has a median of 12. The IQR is the difference between these medians:
IQR = 12 - 10 = 2
Therefore, the appropriate measure of variability for this data set is the IQR, and its value is 2. The mean and median are measures of central tendency, not measures of variability. The range may not be the best measure of variability for this data set because it is influenced by extreme values.
To know more about IQR follow
https://brainly.com/question/28922347
#SPJ1