The number of times which the number 2 x 10-5 is greater than 4 x 10-12 is; 5 × 10⁶ times
To estimate how many times larger 2 x 10-5 is than 4 x 10-12 in the form of a single digit times an integer power of 10;
We must evaluate as follows;
2 x 10-5 divided by 4 x 10-12\( \frac{2 \times {10}^{ - 5} }{4 \times {10}^{ - 12} } \)
Therefore; we have;
0.5 × 10⁷Since we are required to express the answer in the form of a single digit times an integer power of 10; we have;
5 × 10⁶Read more on indices;
https://brainly.com/question/17025327
here's this idk its math ig
Answer:
this is why you pay attention in school kids.
Step-by-step explanation:
any ways i never learned how to do long division but the answer is a decimal
Use the Lagrange's multiplier method to find the extreme values of the function f(x, y, z) = 8x - 4z subject to the constraint
Given, The function f(x, y, z) = 8x - 4zTo find:The extreme values of the given function using Lagrange's multiplier method. Solution: According to the Lagrange's multiplier method,Let us consider a function g(x, y, z) = x² + y² + z² - 9, as a constraint equation and the function f(x, y, z) = 8x - 4z.
Let λ be the Lagrange's multiplier. Since the extreme values of f(x, y, z) are to be found, therefore,∇f(x, y, z) = λ∇g(x, y, z)Where, ∇ is the nabla operator.\(∇f(x, y, z) = (∂f/∂x)i + (∂f/∂y)j + (∂f/∂z)k= 8i + 0j - 4k= 8i - 4k∇g(x, y, z) = (∂g/∂x)i + (∂g/∂y)j + (∂g/∂z)k= 2xi + 2yj + 2zk= 2xi + 2yj + 2kλ= ∇f(x, y, z) / ∇g(x, y, z)\)
Now, solving for x and \(z.8 / 2λ = x ⇒ x = 4λ-4 / 2λ = z ⇒ z = -2λHence, y = 0 from g(x, y, z) = x² + y² + z² - 9 = 0i.e. x² + z² = 9 ⇒ (4λ)² + (-2λ)² = 9 ⇒ 16λ² + 4λ² = 9 ⇒ 20λ² = 9λ = ±√(9/20)\) Now, put the values of x, y and z in the function f(x, y, z) = 8x - 4z.8x - 4z = 8(4λ) - 4(-2λ)= 32λ + 8λ= 40λ and - 40λThus, the extreme values of the function f(x, y, z) = 8x - 4z are 40λ and -40λ, respectively. Answer:
Therefore, the required answer is that the extreme values of the function f(x, y, z) = 8x - 4z using Lagrange's multiplier method are 40λ and -40λ, respectively.Read more on Lagrange's multiplier method from reference:
To know more about extreme visit:
https://brainly.com/question/32546783
#SPJ11
Write 0.125 as a fraction reduced to the lowest terms.
ANSWER
\(\frac{1}{8}\)EXPLANATION
We want to express the given decimal as a fraction in its lowest terms:
\(0.125\)To do this, first convert it to a fraction:
\(0.125\to\frac{125}{1000}\)Now, divide the numerator and denominator by common numbers until they cannot be divided further:
\(\begin{gathered} \frac{125}{1000}=\frac{25}{200}=\frac{5}{40} \\ \Rightarrow\frac{1}{8} \end{gathered}\)That is the fraction in lowest terms.
Question 2 15n + 2 Let {an} be a sequence such that sn = 3n - 9 Compute ) an. k=1 If this is divergent, input "0" as your answer If applicable, submit answers as a decimal (up to 4 digits)
The value is -6
We are given a sequence {an} such that sn = 3n - 9. We can find an by using the formula sn = an + d(n - 1).
Substituting the values for sn and d (which is 1 in this case), we get
an = 3n - 9 - (n - 1)
an = 2n - 10
Therefore, when k = 1, an = 2(1) - 10 = -6.
The answer value is -6.
Expand it to 2 liens
The answer is -6, which can be obtained by using the formula an = 3n - 9 - (n - 1).
Learn more about value here
https://brainly.com/question/18523098
#SPJ4
Identify an equation in point-slope form for the line perpendicular to
y=-x-6 that passes through (-1, 5).
A. y-5= 3(x+1)
B. y +5=(x-1)
C. y+1=3(x-5)
D. y-5--(x+1)
The equation in point-slope form for the perpendicular line is y-5= x+1.
What is slope ?
A line's steepness is determined by its slope. In mathematics, slope is determined by "rise over run" (change in y divided by change in x).
The slope of the line y= -x-6 is -1.
Perpendicular lines slopes satisfy the condtion:
\(m_{1} m_{2} = -1\)
then the slope of the perpendicular line is 1.
The equation in point-slope form of the line that passes through the point (-1, 5) is
y-y1=m(x-x1)
y-5=1(x-(-1))
y-5= x+1
To learn more about the slope from the given link
https://brainly.com/question/16949303
#SPJ1
10. Evaluate (14-2)÷3(2-3) - 2²Mark only one oval.A. OB. 2C. 20D. 22
Order of the operations: parentheses, exponentials, division and multiplication, addition and subtraction.
1. Solve operations in parentheses:
\(=12\div3\cdot6-2^2\)2. Solve exponentials:
\(=12\div3\cdot6-4\)3. Solve division:
\(=4\cdot6-4\)4. Solve multiplication:
\(=24-4\)5. Solve subtraction:
\(=20\)Then, the solution for the given expression is 20Answer: Answer is 20( please make me brainliest i just did this all in my head)
Step-by-step explanation: soo (14-2) =12 12divided by 3=4 so (2*3)= 6 so 4x6=24 24-2*2 =20 (2*2)=4 so 24-4=20 well this is confusing but i tried my best so hope my answer wasn't toooo confusing lol :)
In a certain population, 55% eat ice cream and 65% follow
soccer World Championship. The percentage who both follow the football World Cup and eat ice cream is 30%.
a) Determine the conditional probability that a person eating ice cream complies
European Championship in soccer.
b) Determine the conditional probability that a person watching the European Football Championship eats
ice cream.
c) Are the events independent?
A) The probability that a person eating ice cream complies European Championship in soccer is 6/13.B) The probability that a person who is watching the European Football Championship eats ice cream is 6/11.C) The two events are not independent.
a) The probability of a person eating ice cream follows European Championship in soccer is to be determined. Given that 30% of the people follow soccer World Cup and eat ice cream. Then, using the formula of conditional probability, we get P(A|B) = P(A and B) / P(B).
Here, A: Eating ice cream follows European Championship B: Follow soccer World Cup
P(A and B) = 30%
P(B) = 65%
P(A|B) = P(A and B) / P(B) = 30/65 = 6/13
So, the probability that a person eating ice cream complies European Championship in soccer is 6/13.
b) The probability of a person who is watching the European Football Championship eating ice cream is to be determined. Again, using the formula of conditional probability, we get P(A|B) = P(A and B) / P(B).
Here, A: Eating ice creamB: Watching European Football Championship
P(A and B) = 30%
P(B) = 55% (As 55% eat ice cream)
P(A|B) = P(A and B) / P(B) = 30/55 = 6/11.
So, the probability that a person who is watching the European Football Championship eats ice cream is 6/11.
c) To check whether two events are independent or not, we need to see if the occurrence of one event affects the occurrence of another. So, we need to check whether the occurrence of eating ice cream affects the occurrence of following soccer World Cup.
Using the formula for the probability of independent events, we get
P(A and B) = P(A) x P(B) = 55/100 x 65/100 = 3575/10000 = 0.3575
But P(A and B) = 30/100 ≠ 0.3575
Hence, the two events are not independent.
Know more about probability here,
https://brainly.com/question/31828911
#SPJ11
So, how many people does one cow (= steer or heifer) feed in a year? Actually, for our purposes, let’s say the average "cow" going to slaughter weighs 590 Kg. (1150 pounds) and after the "waste" is removed, yields about 570 pounds (258.1 Kg.) of prepared beef for market sales. This is roughly half the live weight. How many "cows" does it take to satisfy the beef appetite for the population of New York City? (Population of NYC is about 9,000,000 (rounded)
The number of cows needed to satisfy the beef appetite would be 5263
With an average yield of 570 pounds (258.1 Kg.) of prepared beef per cow, we need to determine how many people can be fed from this amount. The number of people fed per cow can vary depending on various factors such as portion sizes and individual dietary preferences. Assuming a reasonable estimate, let's consider that one pound (0.45 Kg.) of prepared beef can feed about three people.
To find the number of cows needed to satisfy the beef appetite for New York City's population of approximately 9,000,000 people, we divide the population by the number of people fed by one cow. Thus, the calculation becomes 9,000,000 / (570 pounds x 3 people/pound).
After simplifying the equation, we get 9,000,000 / 1710 people, which equals approximately 5,263 cows. However, it's important to note that this is a rough estimate and does not consider factors such as variations in consumption patterns, distribution logistics, or other sources of meat supply. Additionally, individual dietary choices and preferences may result in different consumption rates. Therefore, this estimate serves as a general indication of the number of cows needed to satisfy the beef appetite for New York City's population.
Learn more about population here;
https://brainly.com/question/30324262
#SPJ11
A spinner has 17 equal-sized sections marked 1 through 17. Find the probability. Enter your answer as a simplified fraction.
You spin once and land on an odd number.
The probability that you land on an odd number is
If th ere are 10,000 stu dents enrolled in the college an d the institution is funded at the rate of $300 per student unit. At the 95 % confidence level, estimate the interval th at covers the total funding of the college . for full credit, round the answer to TWO decimal places!
Complete question :
A college is funded depending on the mean number of credit units a student takes. A survey involving 16 students yielded the mean number 12 units with a standard deviation 3 units. Assume normal population
If th ere are 10,000 stu dents enrolled in the college an d the institution is funded at the rate of $300 per student unit. At the 95 % confidence level, estimate the interval th at covers the total funding of the college . for full credit, round the answer to TWO decimal places!
Answer: (35823600 , 36176400)
Step-by-step explanation:
Mean number of units = 12
Standard deviation = 3
Number of samples (n) = 10000
Fund rate = 300
Mean = 10000 * 300 * 12 = 36000000
Standard deviation = 10000^0.5 * 300 * 3 = 90000
Fir 95% C. I
Z0.05 = 1.96
Interval = mean ± 1.96 * SE
(36000000 - 1.96*90000) ; (36000000 + 1.96*90000)
(35823600 , 36176400)
The number 25.5 is what percent of 51?
To finf this, we simply divide 25.5 by 51, and then multiply the result by 100.
This is done as follows:
\(\begin{gathered} \frac{25.5}{51}\times100 \\ \Rightarrow0.5\times100 \\ =>\text{ 50 percent} \end{gathered}\)Therefore 25.5 is 50% of 51
I need help please :)
Answer:
Step-by-step explanation:
Just subtract all the numbers from 38.75
a tank contains 100 kg of salt and 1000 l of water. a solution of a concentration 0.05 kg of salt per liter enters a tank at the rate 8 l/min. the solution is mixed and drains from the tank at the same rate.
Solving for C(t), we get:C(t) = 0.05 kg/LAt steady state, the concentration of salt in the tank is 0.05 kg/L or 50 g/L. Note that the units are converted from kg/L to g/L for convenience.
In order to solve the problem, we can start by finding out how much salt is entering the tank every minute. This can be done by multiplying the concentration of the solution by the rate at which it is entering the tank:
0.05 kg/L x 8 L/min = 0.4 kg/min
So, for every minute that the solution is entering the tank, 0.4 kg of salt is being added to the original 100 kg. The total amount of salt in the tank at any given time can be represented by the equation:
S(t) = 100 + 0.4t, where S(t) is the amount of salt in kg at time t in minutes.We can also find the total amount of liquid in the tank at any given time using the rate at which the solution is entering and leaving the tank:
V(t) = 1000 + 8t.
Next, we can find the concentration of salt in the tank at any given time by dividing the amount of salt by the amount of liquid:C(t) = S(t)/V(t) = (100 + 0.4t)/(1000 + 8t)Finally, we can find the concentration of salt in the tank when it reaches a steady state, which occurs when the amount of salt entering the tank equals the amount leaving the tank. At steady state, the rate of salt entering the tank is 0.4 kg/min and the rate of salt leaving the tank is:C(t) x 8 L/min.
Therefore, we can set up the equation:0.4 = C(t) x 8Solving for C(t), we get:
C(t) = 0.05 kg/LAt steady state, the concentration of salt in the tank is 0.05 kg/L or 50 g/L.
Note that the units are converted from kg/L to g/L for convenience.
To know more about concentration visit:
brainly.com/question/30862855
#SPJ11
A circle had a redius of 11 inches . What is the length of an arc subtended by a central angle of 5pi/12 radiant?
Round to the nearest tenth of an inch
Answer:
(5π/12)(11) = about 14.4 inches
Area of a triangular prism
Answer:
if you mean the formula it is (1/2) · b · (6 · h + sqrt(3) · b)
Step-by-step explanation:
Find (f∘g)(0).
f(x)=6x+1
g(x)=3x
(f∘g)(0)=
Answer:
0630 is the only thing I can come up with.
for the training adaptation of maximum strength, what is the recommended number of repetitions per set?
For maximum strength training, it is recommended to perform 1 to 5 repetitions per set, with heavier weights and longer rest periods between sets. This type of training focuses on increasing muscle strength and power.
Maximum strength training is a type of resistance training that is designed to increase muscle strength and power. The number of repetitions per set is an important factor in developing maximum strength, and the recommended range is between 1 and 5 repetitions. For this type of training, heavier weights and longer rest periods between sets are used. This allows the muscles to recover and build strength. During each set, the goal is to lift the weight as fast and explosively as possible, to help increase muscle power. It is important to also keep proper form and technique when performing exercises, as any incorrect movements can result in injury. Maximum strength training should be done with a gradual increase in weight, so that the body can properly adjust to the new load. It is also important to vary the exercises and the intensity level to help the body adapt to the training and to avoid plateaus in progress. To ensure optimal results, it is recommended to consult with a professional trainer or physical therapist.
Learn more about weights here
https://brainly.com/question/23312072
#SPJ4
The population of Austin, Texas, was about 494,000 at the beginning of a decade. The population increased by 3% each year. Write an exponential growth model that represents the population y (in thousands) t years after the beginning of the decade. Find and interpret the y-value when t = 10.
Answer:
y(t) = 494 (1.03)^t
y(10) = 663,89
Step-by-step explanation:
An increase in population by 3% each year means that at the end of each year, the population is 1.03 times what it was at the start of the year
This increase in population continues for t years
Exponential growth model that represents the population y (in thousands) t years after the beginning of the decade is
y(t) = 494 (1.03)^t
Where,
y = population
t = number of years
Find y when t = 10
y(t) = 494 (1.03)^t
y(10) = 494 (1.03)^10
= 494 ( 1.3439)
= 663.8866
Approximately y(10) = 663.89
This means that after 10 years from when the population was 494,000, it increased to 663,89.
Find the area of a lateral face of the regular pyramid.
Answer:
2684 \(units^{2}\)
Step-by-step explanation:
We find the area of the 4 triangles
area = 1/2 base x height All the bases area the same measurement
a = 1/2(22)(61)
a = 671
There are 4 sides
671 x 4 = 2684
in how many ways can the board of trustees pick a president? the president should be one of the 1000 professors.
The Board of Trustees can choose a president and a provost in 1000 different ways because there are 1000 professors on the college's faculty. The concept used in this is permutations and combinations.
What are combinations?
A combination in mathematics is a choice made from a group of separate elements where the order of the selection is irrelevant (unlike permutations). Three fruits, such as an apple, an orange, and a pear, for instance, can be combined into three different pairs: an apple and a pear, an apple and an orange, or a pear and an orange. A k-combination of a set S is officially defined as a subset of S's k unique elements. So, if and only if each combination contains the same elements, two combinations are said to be identical.
To learn more about permutations and combinations visit;
https://brainly.com/question/29594894
#SPJ4
Correct question:
Suppose that a college has 1000 professors.
a) In how many ways can the Board of Trustees pick a president? The president should be one of the 1000 professors.
The average cost for a company to produce x units of a product is given by the function A(x) = 12x+1250/x. Use A (x) to estimate the change in average cost as production goes from 250 units to 251 units. The change in average cost is approximately _____dollars.
The change in average cost is approximately 11.98 dollars.
To estimate the change in average cost as production goes from 250 units to 251 units, we need to calculate the difference between A(251) and A(250).
A(250) = 12(250) + 1250/250 = 300 + 5 = 305
A(251) = 12(251) + 1250/251 = 301.03
Therefore, the change in average cost is approximately:
A(251) - A(250) = 301.03 - 305 = -3.97 dollars (rounded to two decimal places)
So the change in average cost is approximately negative 3.97 dollars.
To estimate the change in average cost as production goes from 250 units to 251 units, we need to find the difference between the average cost at 251 units and the average cost at 250 units using the given function A(x) = 12x + 1250/x.
First, find the average cost for 250 units:
A(250) = 12(250) + 1250/250 = 3000 + 5 = 3005 dollars.
Next, find the average cost for 251 units:
A(251) = 12(251) + 1250/251 ≈ 3012 + 4.98 ≈ 3016.98 dollars.
Now, find the change in average cost:
Change = A(251) - A(250) ≈ 3016.98 - 3005 = 11.98 dollars.
The change in average cost is approximately 11.98 dollars.
Visit here to learn more about Average Cost:
brainly.com/question/29509552
#SPJ11
What is the mass of gasoline (density = 0.680 g/cm3 ) in a 94.6 l gasoline tank?
A 94.6 L gasoline with a density of 0.680 g/cm^3 has a mass of 64328 g.
Density is defined as the ratio between the mass of a substance and the volume it occupies. Denoted by ρ, density is mass per unit volume and the formula is given below:
ρ = mass / volume
Converting first the volume from L to cm^3.
1 L = 1000 cm^3
94.6 L = 94.6(1000 cm^3)
94.6 L = 94,600 cm^3
Given the density of the gasoline and its volume, solve for the mass of the gasoline using the formula for the density.
ρ = mass / volume
0.680 g/cm^3 = mass / 94,600 cm^3
mass = 0.680 g/cm^3 (94,600 cm^3)
mass = 64328 g
mass = 64.328 kg
Learn more about density here: https://brainly.com/question/1354972
#SPJ4
¡cuantas unidades se deben producir para que el costo sea el más bajo posible?
\(c(x)=800-10x+0.25x^{2}\)
Of all the closed right circular cylindrical cans of volume 128πcm
3, find the dimensions of the can which has minimum surface area.
The can's minimum surface area should have a height of 8 cm and a radius of 4 cm.
Given:
The volume of closed right circular cylindrical cans = 128π cm³
As we know the volume of a cylinder = πr²h
By equating;
πr²h = 128π
h = 128/r²
To get the dimensions of a can with minimum surface area;
S = 2πrh + 2πr
Put h = 128/r²;
Therefore, S(r) = 256π/r + 2πr²
S'(r) = -256π/r² + 4πr
S''(r) = -(2*256π)/r³ + 4π
Now, for S(r) = 0;
r = 4cm
for S''(4) > 0 at r = 4 is minimum point.
Hence,
h = 128π/(π*4*4)
h = 8cm
Therefore, the minimum surface area of the can should have a radius of 4 cm and a height of 8 cm.
To learn more about right circular cylinder click here:
brainly.com/question/28448651
#SPJ4
Find the square root of 8281 using long division technique
A biologist was sitting near a pond and noticed a large number of dragonflies. He also saw both frogs and fish trying to eat the
dragonflies. He counted a total of 89 fish, frogs, and dragonflies. He noticed that there were four times as many dragonflies as fish and
that the frogs were five more than twice the number of fish
89 /3
frogs = 29.6
fish = 29.6
dragonflies = 29.6
all of them equal 89
a) Work out the value of (√√5)²x (√√3)²?
b) Work out the value of (9)** (√√30)?
Answer:
15 and 270
Step-by-step explanation:
using the property of radicals
(\(\sqrt{x}\) )² = x and (\(\sqrt[3]{x}\) )³ = x
then
(\(\sqrt{5}\) )² × (\(\sqrt{3}\) )² = 5 × 3 = 15
(\(\sqrt[3]{9}\) )³ × (\(\sqrt{30}\) )² = 9 × 30 = 270
You can retry this question below You want to buy a $191,000 home. You plan to pay 10% as a down payment, and take out a 30 year loan for the rest. a) How much is the loan amount going to be? b) What will your monthly payments be if the interest rate is 6%? c) What will your monthly payments be if the interest rate is 7% ? Question Help: Video 1 D Video 2Ω Message instructor
The same formula as used in part (b) with r = 7%/12 = 0.005833 and the answers are: a) $171,900 b) $1,031.62 c) $1,145.80
a) The amount of the loan is going to be $171,900.
We can use the following formula to calculate the loan amount:
Loan Amount = Total Cost - Down Payment
$191,000 - (0.1 × $191,000) = $171,900b)
If the interest rate is 6%, the monthly payments will be $1,031.62.
We can use the following formula to calculate the monthly payments:
Monthly Payment = P × (r/n) × [1 + (r/n)]nt / [(1 + (r/n))nt - 1]
Where,
P = Loan amountr = Interest rate per year (as a decimal)
n = Number of payments per year
12t = Number of years
P = $171,900r
= 6%/12
= 0.005t
= 30
Plug these values in the above formula, we get:
Monthly Payment = $1,031.62 (approx)c)
If the interest rate is 7%, the monthly payments will be $1,145.80.
We can use the same formula as used in part (b) with r = 7%/12 = 0.005833. We get:
Monthly Payment = $1,145.80 (approx)
For more related questions on formula:
https://brainly.com/question/20748250
#SPJ8
Find the measure of the numbered angle.
The measure of the numbered angle in a triangle is as follows:
∠1 = ∠3 = 50°
∠2 = ∠4 = 130°
∠5 = 40°
∠7 = 90°
∠8 = 140°
How to find the measure of angles?The measure of the angles can be found as follows:
The sum of angles in a triangle is 180 degrees. We have two right triangles in the diagram. A right triangle has one of its angles as 90 degrees.
Therefore,
90 + 40 + ∠1 = 180
∠1 = 180 - 130
∠1 = 50 degrees
Hence,
∠1 = ∠3 = 50 degrees(vertically opposite angles)
∠2 = ∠4 = 360 - 100 ÷ 2 = 260 ÷ 2 = 130 degrees
∠5 = 180 - 50 - 90 = 40 degrees
∠7 = 90 degrees(angles on a straight line)
∠8 = 180 - 40 = 140 degrees
learn more on angles here: https://brainly.com/question/30371279
#SPJ1
solve t^2y'+2ty-y^3=0
The general solution to the given differential equation is
y = ± √(1 / (2ln|t| + 4/t - C2))
Solution to the differential equationTo solve the given differential equation, we can use the method of separable variables. Let's go through the steps:
Rearrange the equation to separate the variables:
t^2y' + 2ty - y^3 = 0
Divide both sides of the equation by t^2:
y' + (2y/t) - (y^3/t^2) = 0
Now, we can rewrite the equation as:
y' + (2y/t) = (y^3/t^2)
Separate the variables by moving the y-related terms to one side and the t-related terms to the other side:
(1/y^3)dy = (1/t - 2/t^2)dt
Integrate both sides of the equation:
∫(1/y^3)dy = ∫(1/t - 2/t^2)dt
To integrate the left side, let's use a substitution. Let u = y^(-2), then du = -2y^(-3)dy.
-1/2 ∫du = ∫(1/t - 2/t^2)dt
-1/2 u = ln|t| + 2/t + C1
-1/2 (y^(-2)) = ln|t| + 2/t + C1
Multiply through by -2:
y^(-2) = -2ln|t| - 4/t + C2
Now, take the reciprocal of both sides to solve for y:
y^2 = (-1) / (-2ln|t| - 4/t + C2)
y^2 = 1 / (2ln|t| + 4/t - C2)
Finally, taking the square root:
y = ± √(1 / (2ln|t| + 4/t - C2))
Therefore, the general solution to the given differential equation is:
y = ± √(1 / (2ln|t| + 4/t - C2))
Learn more on differential equation here https://brainly.com/question/1164377
#SPJ1