Step-by-step explanation:
\( {a}^{3} + {a}^{2} b + a {b}^{2} \)
[Taking a common from each term]
\( = a( {a}^{2} + ab + {b}^{2} )\)
\(as \: {a}^{2} + ab + {b}^{2} = {(a + b)}^{2} \)
Hence,
\( = a {(a + b)}^{2} (ans)\)
Helpppp asap : two non-vertical lines are parallel if they have the same slope and different y-intercepts.
true
false
The area under the standard normal distribution curve to the right of z = 1 is :.
Answer:
0.1587
Step-by-step explanation:
In order to find this probability, we need to look at the z-table of values. Based on the z-table, we have P(Z<1)=0.8413 P ( Z < 1 ) = 0.8413 . Therefore, the area under the standard normal curve to the right of z=1.0 is 0.1587 .
A plastic pool gets filled up with 10L of water per hour.
a) After 2 hours how much water is in the pool? Write an equation.
b) After how many hours will the pool be 80L?
c) Is part b) linear or nonlinear?
a) The amount of water in the pool after 2 hours can be calculated using the equation.
Water in pool = 10L/hour × 2 hours = 20L.
b) The pool will be 80L when the equation is satisfied: 80L = 10L/hour × Time.
Solving for Time, we find Time = 8 hours.
c) Part b) is linear.
a) To calculate the amount of water in the pool after 2 hours, we can use the equation:
Water in pool = Water filling rate × Time
Since the pool gets filled up with 10L of water per hour, we can substitute the values:
Water in pool = 10 L/hour × 2 hours = 20L
Therefore, after 2 hours, there will be 20 liters of water in the pool.
b) To determine the number of hours it takes for the pool to reach 80 liters, we can set up the equation:
Water in pool = Water filling rate × Time
We want the water in the pool to be 80 liters, so the equation becomes:
80L = 10 L/hour × Time
Dividing both sides by 10 L/hour, we get:
Time = 80L / 10 L/hour = 8 hours
Therefore, it will take 8 hours for the pool to contain 80 liters of water.
c) Part b) is linear.
The equation Water in pool = Water filling rate × Time represents a linear relationship because the amount of water in the pool increases linearly with respect to time.
Each hour, the pool fills up with a constant rate of 10 liters, leading to a proportional increase in the total volume of water in the pool.
For similar question on amount.
https://brainly.com/question/25720319
#SPJ8
find the orthogonal complement w⊥ of w and give a basis for w⊥.w = xyz: x = 12t, y = − 12t, z = 6t
The orthogonal complement w⊥ of w has a basis given by {v1, v2} = {(1, 0, 0), (0, 1, 2)}.
How to find the orthogonal complement w⊥ of w?To find the orthogonal complement w⊥ of w, we need to find the set of all vectors that are orthogonal (perpendicular) to w.
Given w = (x, y, z) = (12t, -12t, 6t), we can find a vector v = (a, b, c) that is orthogonal to w by taking their dot product equal to zero:
w · v = 0
Substituting the values of w and v:
(12t, -12t, 6t) · (a, b, c) = 0
(12t)(a) + (-12t)(b) + (6t)(c) = 0
12at - 12bt + 6ct = 0
Now, we can solve this equation to find the values of a, b, and c that satisfy the orthogonal condition for all values of t.
12at - 12bt + 6ct = 0
Factor out t:
t(12a - 12b + 6c) = 0
For this equation to hold true for all values of t, the expression inside the parentheses must equal zero:
12a - 12b + 6c = 0
Divide by 6:
2a - 2b + c = 0
This equation represents a plane in three-dimensional space. To find a basis for w⊥, we can express this equation in the form of a linear combination of vectors. Let's solve for c:
c = 2b - 2a
Now, we can express the basis vectors for w⊥ in terms of a and b:
v = (a, b, 2b - 2a)
We can choose any values for a and b to get different vectors in the orthogonal complement w⊥. For example, we can set a = 1 and b = 0:
v1 = (1, 0, 0)
Or we can set a = 0 and b = 1:
v2 = (0, 1, 2)
These two vectors, v1 and v2, form a basis for w⊥.
Therefore, the orthogonal complement w⊥ of w has a basis given by {v1, v2} = {(1, 0, 0), (0, 1, 2)}.
Learn more about Orthogonal.
brainly.com/question/32196772
#SPJ11
Krista needs to stop at the grocery store on the way home from her work. What is the shortest distance, in miles, from Krista's home to her work?
By using Pythagorean theorem, we find that the shortest distance from Krista's home to her work is approximately 1.19 miles.
To find the shortest distance from Krista's home to her work, we can use the Pythagorean theorem. Let's convert the distances to a common unit, such as miles
Distance from grocery store to work = 500 m = 0.31 miles (since 1 mile = 1609.34 meters)
Total distance from home to work = 2 km = 1.24 miles (since 1 mile = 1.609 km)
Let's call the distance from Krista's home to the grocery store "x". Then, we can set up the following equation
x^2 + 0.31^2 = 1.24^2
Simplifying and solving for x, we get
x^2 = 1.24^2 - 0.31^2 = 1.4223
x = √1.4223 ≈ 1.19 miles
Therefore, the shortest distance is approximately 1.19 miles.
To know more about Pythagorean theorem:
https://brainly.com/question/14930619
#SPJ4
--The given question is incomplete, the complete question is given
" Krista needs to stop at the grocery store on the way home from her work. What is the shortest distance, in miles, from Krista's home to her work? the distance from grocery store to work is 500m, and the total distance from home to work is 2km"--
The force, F newtons, exerted by a magnet on a metal object is inversely
proportional to the square of the distance d cm.
When d = 2 cm, F= 50 N.
Express F in terms of d.
Answer:
F = 200/d^2
Step-by-step explanation:
F is inversely proportional to d^2
The equation is;
F = k/d^2
K = F•d^2
so to get k, we substitute the given values
K = 50 * 2^2
K = 50 * 4
K = 200
So we have that;
F * d^2 = 200
F = 200/d^2
The acceleration of a Maserati (sports car) is proportional to the difference between 250 km/h and its velocity. If the car can accelerate from rest to 100 km/h in 10 s, how long will it take for the car to accelerate from rest to 200 km/h?
Answer:
a) The differential equation for the velocity is given by
(dv/dt) = k(250 - v)
b) v(t) = 250 - e⁽⁵•⁵² ⁻ ᵏᵗ⁾
With units of km/h
Step-by-step explanation:
Acceleration, a ∝ (250 - v)
But acceleration is widely given as dv/dt
(dv/dt) ∝ (250 - v)
(dv/dt) = k(250 - v)
where k = constant of proportionality
(dv/dt) = k(250 - v)
b) (dv/dt) = k(250 - v)
dv/(250 - v) = k dt
∫ dv/(250 - v) = ∫ k dt
- In (250 - v) = kt + c (where c is the constant of integration)
v(0) = 0; meaning, at t = 0, v = 0
- In 250 = 0 + C
c = - In 250 = - 5.52
- In (250 - v) = kt - 5.52
In (250 - v) = 5.52 - kt
250 - v = e⁽⁵•⁵² ⁻ ᵏᵗ⁾
v = 250 - e⁽⁵•⁵² ⁻ ᵏᵗ⁾
With units of km/h
i hope this work for you
and sory if im wrang
For 91-92; A dental surgery has two operation rooms. The service times are assumed to be independent, exponentially distributed with mean 15 minutes. Andrew arrives when both operation rooms are empty. Bob arrives 10 minutes later while Andrew is still under medical treatment. Another 20 minutes later Caroline arrives and both Andrew and Bob are still under treatment. No other patient arrives during this 30-minute interval. 91. What is the probability that Caroline will be ready before Andrew? A. 0.35 B. 0.25 C. 0.52 D. None of these 92. What is the probability that Caroline will be ready before Bob? A. 0.35 B. 0.25 C. 0.52
Answer:
91. The probability that Caroline will be ready before Andrew is 0.25 (Option B). Since the service times are exponentially distributed with a mean 15 minutes, the remaining service time for Andrew when Caroline arrives is also exponentially distributed with the mean 15 minutes. The service time for Caroline is also exponentially distributed with mean 15 minutes. The probability that Caroline’s service time is less than Andrew’s remaining service time is given by the formula P(X < Y) = 1 / (1 + λY / λX), where λX and λY are the rates of the exponential distributions for X and Y respectively. Since both service times have the same rate (λ = 1/15), the formula simplifies to P(X < Y) = 1 / (1 + 1) = 0.5. Therefore, the probability that Caroline will be ready before Andrew is 0.25.
92. The probability that Caroline will be ready before Bob is 0.35 (Option A). Since Bob arrived 10 minutes after Andrew, his remaining service time when Caroline arrives is exponentially distributed with mean 15 minutes. Using the same formula as above, we get P(X < Y) = 1 / (1 + λY / λX) = 1 / (1 + 1) = 0.5. Therefore, the probability that Caroline will be ready before Bob is 0.35.
Victoria buys 5 scarves for a total of 36.25. If each scarf costs the same amount of money, how much did one scarf cost?
Answer:
7.25
Step-by-step explanation:
36.25/5=7.25 simple
Step-by-step explanation:
cost of 5 scarf = 36.25
cost of one scarf = 36.25/5
= 725/100
= 7.25 $
so one scarf cost = 7.25$
plz mark my answer as brainlist plzzzz vote me also and hope this helps you ...
evaluate the series 2 + 4 + 8 + 16 + 32 + 64
Your purchase costs, $5,200, including tax. You sign an installment loan for $2,200 after the down payment. The remainder including the finance charge will be paid in 22 equal monthly installments of $114.66 at 16% interest. What is the new balance after one month?
Find the solution for the equation and check it.
2+4x=30
Solution:
Check:
Answer:
x=7
Step-by-step explanation:
2+4x=30
or , 4x=30-2
or , x=28/4
x=7
A man earns $172 per week, while his aunt earns $784 per month. How much more does the man's aunt earn than him per week? [Hint: The man's aunt earn $ more than him per week.]
The amount that his aunt earns more than him in a week is $24. and
the amount that his aunt earns per week is $196.
According to the statement
we have find that the How much more does the man's aunt earn than him per week.
So, For this purpose, we know that,
According to the information:
The amount A man earns $172 per week, while his aunt earns $784 per month.
His aunt earns per week = $784 /4
His aunt earns per week = $196.
And the man earns $172 per week and the His aunt earns per week is $196.
The amount that his aunt earns more than him in a week = 196-172
The amount that his aunt earns more than him in a week = 24.
So, The amount that his aunt earns more than him in a week is $24. and
The amount that his aunt earns per week is $196.
Learn more about amount here
https://brainly.com/question/24703884
#SPJ9
How many of the numbers from the set $\{1,\ 2,\ 3,\ldots,\ 50\}$ have a perfect square factor other than one?
Answer:
2^2 ( 1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44,48
3^2(1,2,3, 5) = 9, 18, 27, 45
5^2(1, 2) = 25, 50
7^2 = 49
19 numbers
Step-by-step explanation:
Find the common factor of all the terms of the polynomial 16x2 - 14x. O A. 2x² O B. 44² O c. 2x O D. 4x
Answer:
c. 2x.
Step-by-step explanation:
16x2 - 14x
Common factor of 16 and 14 = 2'
for x2 and x it is x,
Answer: 2x.
if x is a continuous random variable on the interval 0, 10
then p(x=5) = f(5) = 1/10 is this correct?
No, p(x=5) = f(5) = 1/10 is not correct.
How to find if p(x=5) = f(5) = 1/10 is correct?If x is a continuous random variable on the interval [0, 10], then the probability of x taking on any specific value (such as 5) is zero.
This is because there are infinitely many possible values that x can take on within the interval, and the probability of x taking on any one specific value is vanishingly small.
Instead, the probability of x falling within a certain range of values is what is meaningful.
This is typically represented by the probability density function (PDF) of the random variable, denoted as f(x). The probability of x falling within a range [a, b] is then given by the integral of the PDF over that range:
P(a <= x <= b) = integral from a to b of f(x) dx
For a continuous uniform distribution over the interval [0, 10], the PDF is a constant function:
f(x) = 1/10 for 0 <= x <= 10
f(x) = 0 otherwise
Using this PDF, we can find the probability of x falling within a specific range, but the probability of x taking on any one specific value is always zero:
P(x = 5) = 0
So, the statement "p(x=5) = f(5) = 1/10" is not correct for a continuous random variable.
Learn more about continuous random variable
brainly.com/question/17238189
#SPJ11
PLEASE HELP ASAP?!!
What are the factors of f(x)=4x^3-3x-1? Explain your thinking.
What are the zeros of this function? What do zeros mean for a function when it comes to graphing?
To find the factors of f(x) = 4x^3 - 3x - 1, we can use polynomial long division or synthetic division to check if the polynomial is divisible by (x - a), where a is a potential factor. However, in this case, it is not immediately obvious which values of a to try.
One way to proceed is to graph the function and look for the x-intercepts, which correspond to the zeros of the function. The graph below shows the function f(x) = 4x^3 - 3x - 1:
From the graph, we can see that the function has one zero near x = -1, one zero near x = 0.4, and one zero near x = 1. We can use numerical methods such as Newton's method or the bisection method to approximate these zeros to several decimal places. For example, using Newton's method with an initial guess of x = -1, we can find the zero near x = -1 to be approximately -0.7391.
Zeros of a function are the values of x where the function equals zero. Geometrically, the zeros of a function are the x-intercepts of its graph. When graphing a function, the zeros give us important information about the behavior of the function. For example, at a zero, the function changes sign, which means that it either crosses the x-axis or touches it and turns around. Zeros can also indicate the number and type of roots of a polynomial, as well as the behavior of the function near the roots (e.g., whether the function approaches zero from above or below).
PLEASE HELP WILL MARK BRAINLEIST UV ∥ RT . Find RS.
Answer:
is this triangle supposed to be a right triangle?
Step-by-step explanation:
i can't solve unless i know the type of triangle
Simplify 5(8d+ 6
A. 13d + 6
B. 130d+ 11
C. 40d+ 6
D. 40d+ 30
Answer:
The answer choice is D.
Step-by-step explanation:
Multiply 5 and 8
= 40
Then put d to 40
=40d
And also multiply 6 with 5
which equals to 30.
Now the expression would be: 40d + 30
The fifth term of an arithmetic progression is -7, and the difference is -3. Calculate the first term and the
Sum of the first 12 terms.
Answer: a₁=5, S₁₂=-138.
Step-by-step explanation:
The fifth term of an arithmetic progression a₅=-7.
The difference d=-3.
Calculate: a) the first term a₁; b) sum of the first 12 terms S₁₂.
a)
\(\boxed {a_n=a_1+(n-1)*d}\)
a₅=a₁+(5-1)*(-3)
a₁+4*(-3)=-7
a₁-12=-7
a₁=5.
b)
\(\displaystyle\\\boxed {S_n=\frac{2a_1+(n-1)*d}{2}*n }\)
\(\displaystyle\\S_{12}=\frac{2 *5+(12-1)*(-3)}{2}*12\\\\ S_{12}=\frac{10+11*(-3)}{2}*12\\\\ S_{12}=\frac{10-33}{2}*12\\\\ S_{12}=\frac{-23*12}{2} \\\\S_{12}=-23*6\\\\S_{12}=-138.\)
Your uncle wants to create a dog small enough to fit into a purse. Of the hundreds of dogs on his farm, he breeds only the smallest 10% of them. He then breeds only the smallest 10% of their offspring, and continues to breed only the smallest 10% of each generation. Over 20 years, he observes that his group of dogs did become smaller (though not small enough to fit into a purse). Which line of support does he have that his dogs have evolved?.
A kind of evolution through artificial selection is the practice of choosing creatures with desired features over several generations.
The mix of alleles found in an organism is known as its genotype. A phenotype is also the culmination of all the organism's discernible traits. In artificial selection, people choose animals or plants with favored phenotypic features for reproduction.
Since the phenotype is impacted by the genotype, the process of artificial selection alters allele frequencies throughout generations, resulting in the evolution of desirable features in offspring.
In conclusion, a kind of evolution through artificial selection is the practice of selecting creatures with desired qualities over several generations.
To learn more about artificial selection
https://brainly.com/question/14480958
#SPJ4
three cards are drawn sequentially from a shuffled deck without replacement. what is the approximate probability all three drawn cards have numbers on them? group of answer choices 41.3% 69.2% 32.3% 33.2%
Probability all three drawn cards have numbers on them = 32.3%
Out of 52 total cards, there are 36 numbered cards.
In the first attempt probability of numbered cards being drawn
= 36 / 52
=0.692
After the first draw, total numbered cards remaining = 35
Total cards remaining = 51
Probability of numbered card in second attempt = 35 / 51
= 0.686
Probability of numbered card in third attempt = 34 / 50
= 0.68
Total probability of all cards being numbers = (36 / 52) x (35 / 51) x (34/50)
= 0.692 x 0.686 x 0.68
=0.323 x 100%
=32.3%
You can learn more about probability from:
https://brainly.com/question/21586810
#SPJ4
Michael has v sweets.
Lily has 5 more sweets than Michael.
James has 8 more sweets than Lily.
They have 75 sweets altogether.
Find the number of sweets Michael has.
Answer:
lily - 5
5+8= 13
James - 13
13+5= 18
18-75= 57
Michael - 57
find the sum of the first 11 terms in the series 3/2 + 1 + 1/2 + ...
The sum of the first 11 terms is 44
How to find the sum of the first 11 termsThe sequence 3/2 + 1 + 1/2 + ... is an arithmetic sequence. the terms in the sequence are defined as follows
the first term, a = 3/2 and
the common difference, d = 1/2.
Sum of AP formula :
Sn = (n/2)(2a + (n-1)d)
where Sn is the sum of the first n terms of an arithmetic sequence.
Plugging in the values we get:
S11 = (11/2)(2(3/2) + (11-1)(1/2))
= (11/2)(3 + 5)
= (11/2)(8)
= 44
Learn more arithmetic sequence at:
https://brainly.com/question/29777843
#SPJ1
If one gallon is equal to eight pints, how many pints are in four gallons and two pints?
Answer: 36
Step-by-step explanation:
Please help we already know it’s not the bottom one
Answer:
A. x^2-3
Step-by-step explanation:
There are no stretches or compressions, just translated down 3 units.
Give the center and a point on the circle:
Center (10, 9) and Point on Circle (4, 7)
What is the radius2
Answer:
Step-by-step explanation:
\((x-h)^2+(y-k)^2=r^2\\ \\ (x-10)^2+(y-9)^2=r^2\\ \\ (4-10)^2+(7-9)^2=r^2\\ \\ 36+4=r^2\\ \\ r^2=40\)
try counting each of the 6 notes out loud and notice where the accents are to determine the meter type.
Counting the 6 notes out loud and noticing where the accents are will help determine the meter type.
When counting the 6 notes out loud, pay attention to the emphasis or accent placed on certain notes. In music, accents can fall on strong beats or weak beats, creating different meter types. For example, if the accents fall on the first and fourth notes, it indicates a duple meter.
This means that the music is organized into groups of two beats. On the other hand, if the accents fall on the first, third, and fifth notes, it suggests a triple meter. This means that the music is organized into groups of three beats. By counting and identifying the accents, you can determine the meter type and better understand the rhythmic structure of the music.
For more similar questions on beats
brainly.com/question/25051025
#SPJ8
you are a gift to those around you.
Answer:
And you bring a smile, upon every golden flower.
~ Isimpfortnpu
forty percent of a number is greater than one-half the number decreased by 15. which inequality can be used to determine the number?
As per the concept of the inequality, the determined number is written as 0.4x > x/2 - 15
In math the term inequality means the unequal relationship between the two or more expressions.
The given statement is Forty percent of a number is greater than one-half the number decreased by 15.
And we want to find the number that is used to determine the inequality.
When we looking into the given question, here let us consider x be that unknown number.
And then based on the given statement, here we have divide it into two parts.
Now, the first, the forty percent of the number and it can be written as 40%x or 0.4x.
And then the next is one-half the number is 1/2 x or x/2
Now, we have to combine the whole statement,
Then we get the resulting inequality as,
=> 0.4x > x/2 - 15
To know more about inequality here.
brainly.com/question/28823603
#SPJ4