Answer:
a. 2500 cm³.
b. 2.5 litres.
Explanation:
Given the following data:
Density = 0.8g/cm³
Mass = 2000g
To find the volume of the petrol;
Density can be defined as mass all over the volume of an object.
Simply stated, density is mass per unit volume of an object.
Mathematically, density is given by the equation;
\(Density = \frac{mass}{volume}\)
Making volume the subject of formula, we have;
\(Volume = \frac{mass}{density}\)
Substituting into the equation, we have:
\(Volume = \frac{2000}{0.8}\)
Volume = 2500 cm³
a. The volume of the petrol in the can in cubic centimeters (cm³) is 2000.
b. The volume of the petrol in the can in litres;
1000 cm³ = 1 litre
2500 cm³ = x litres
Cross-multiplying, we have;
1000x = 2500
x = 2500/1000
x = 2.5 litres.
Therefore, the volume of the petrol in the can in litres is 2.5.
An ideal monatomic gas expands isothermally from 0.540 m3 to 1.25 m3 at a constant temperature of 720 K. If the initial pressure is 1.20e5 Pa.
a) Find the work done on the gas
b) Find the thermal energy transfer Q
c) Find the change in the internal energy
Answer:
a) The work done on the gas during an isothermal expansion is given by:
W = nRT ln(V2/V1)
where n is the number of moles of gas, R is the gas constant, T is the temperature, V1 is the initial volume, and V2 is the final volume.
Since the gas is monatomic, we can use the ideal gas law to find the number of moles:
PV = nRT
n = PV/RT
Substituting this expression for n into the equation for work, we get:
W = PV ln(V2/V1)
where we have cancelled out the R and T terms.
Substituting the given values, we get:
W = (1.20e5 Pa)(0.540 m^3) ln(1.25/0.540) = 1.38e4 J
b) The thermal energy transfer Q during an isothermal process is equal to the work done on the gas. Therefore, Q = 1.38e4 J.
c) The change in internal energy ΔU of a gas during an isothermal process is zero, since the temperature of the gas does not change. Therefore, ΔU = 0.
A 0.0400 kg meter stick is placed on a thin rod at the 30.0 cm mark. What is the minimum mass required to be placed on the 0.00 cm mark on the stick to maintain equilibrium?
Answer in kg
The minimum mass required to be placed on the 0.00 cm mark of the meter stick to maintain equilibrium is 0.120 kg.
To maintain equilibrium, the torques acting on the meter stick must balance each other. The torque is given by the formula:
τ = r * F * sin(θ)
where τ is the torque, r is the distance from the pivot point to the point where the force is applied, F is the force applied, and θ is the angle between the force vector and the lever arm.
In this case, the meter stick is in equilibrium when the torques on both sides of the pivot point cancel each other out. The torque due to the weight of the meter stick itself is acting at the center of mass of the meter stick, which is at the 50.0 cm mark.
Let's denote the mass to be placed on the 0.00 cm mark as M. The torque due to the weight of M can be calculated as:
τ_M = r_M * F_M * sin(θ)
where r_M is the distance from the pivot point to the 0.00 cm mark (which is 30.0 cm), F_M is the weight of M, and θ is the angle between the weight vector and the lever arm.
Since the system is in equilibrium, the torques on both sides of the pivot point must be equal:
τ_M = τ_stick
r_M * F_M * sin(θ) = r_stick * F_stick * sin(θ)
Substituting the given values:
30.0 cm * F_M = 20.0 cm * (0.0400 kg * 9.8 m/s^2)
Solving for F_M:
F_M = (20.0 cm / 30.0 cm) * (0.0400 kg * 9.8 m/s^2)
F_M = 0.0264 kg * 9.8 m/s^2
F_M = 0.25872 N
Finally, we can convert the force into mass using the formula:
F = m * g
0.25872 N = M * 9.8 m/s^2
M = 0.0264 kg
Therefore, the minimum mass required to be placed on the 0.00 cm mark of the meter stick to maintain equilibrium is 0.120 kg.
For more such questions on equilibrium, click on:
https://brainly.com/question/517289
#SPJ8
WILL MARK BRAINLIEST PLS HELPPP -- Which of Newton’s Laws explains why the satellite would collide with the moon if gravity is “turned off?”
picture attached
Answer:
b
Explanation:
Compare the slant range Ri and flight time ti for the depicted projectile with the range R and flight time t for a projectile (launched with speed v0 and inclination angle α) which flies over a horizontal surface. Evaluate your four results for v0 = 80m/s and α = 16°
The slant range and flight time for the projectile in the illustration are roughly Ri = 1013.7 m and ti = 12.4 s for v0 = 80 m/s and = 16°. R = 921.8 m and t = 9.57 s, respectively, are the initial velocity and inclination angle over a horizontal surface.
Describe a projectile.Any item launched into space with just gravity acting on it is referred to as a projectile. Gravity is the main force affecting a projectile.
Considering that the projectile's initial speed is 80 m/s and its inclination towards the horizontal is 16 degrees,
Range R: R = (\(v0^2/g\)) * sin(2α)
Flight time t: t = (2 * v0 * sinα) / g
Plugging in the given values, we get:
Range R: R = (\(80^2/9.81\)) * sin(2*16°) ≈ 921.8 m
Flight time t: t = (2 * 80 * sin16°) / 9.81 ≈ 9.57 s
To calculate the slant range and flight time for the depicted projectile, we can use the following equations:
Slant range Ri: Ri = √(\(H^2 + R^2\)), where H is the height of the elevated position
Flight time ti: ti = (2 * v0 * sinα + √(\(4 * v0^2 * sin^2α + 8 * H * g\))) / (2 * g)
From the diagram, it appears that the elevated position is approximately 150 meters above the ground, so we can use H = 150m in our calculations:
Slant range Ri: Ri = √(\(150^2 + 921.8^2\)) ≈ 1013.7 m
Flight time ti: ti = (2 * 80 * sin16° + √(\(4 * 80^2 * sin^2\)(16°) + 8 * 150 * 9.81)) / (2 * 9.81) ≈ 12.4 s.
To know more about projectile visit:-
https://brainly.com/question/31126282
#SPJ1
please answer all the three question i am not sure of my answer i have final exam it would mean alot for u to help
Answer:
3 : Presence of a catalyst and Temperature
4 : correct, nothing needed to change
5 : Le Chatelier's principle states that when an equilibrium system is subjected to a disturbance or stress, it will undergo a shift in the direction that counteracts the impact of the stress, ultimately reestablishing a new state of equilibrium.
A 50kg boy stands on a rough horizontal ground. The coefficient of static friction is .68
Complete question:
A 50kg boy stands on a rough horizontal ground. The coefficient of static friction is .68. The present static friction between the boy and the ground is ?
Answer:
The present static friction between the boy and the ground is 333.2 N
Explanation:
Given;
mass of the boy, m = 50 kg
the coefficient of static friction, μ = 0.68
The static friction between the boy and the ground is given as;
\(F_s = \mu F_n\\\\F_s = \mu (mg)\\\\F_s = 0.68 *(50*9.8)\\\\F_s = 333.2 \ N\)
Therefore, the present static friction between the boy and the ground is 333.2 N
The complete question requires that we find the static friction between the boy and the horizontal ground.
Here, we are required to determine the static frictional force between the boy and the ground.
The static friction between the boy and the horizontal ground is; 333.2NThe coefficient of static friction is a measure of the frictional force between two objects or an object and a surface.
The coefficient of static friction is a measure of the frictional force between two objects or an object and a surface.The coefficient of static friction represented by the symbol, μ is given mathematically as;μ = F(s)/F(n)
where F(n) is the normal reaction; in this case, the weight of the boy.F(n) = 50 × 9.8F(n) = 490N
Therefore, the static frictional force,
F(s) = μ × F(n)
F(s) = 0.68 × 490F(s) = 333.2N.
Ultimately, the static friction between the boy and the horizontal ground is; 333.2N
Read more:
https://brainly.com/question/13758352
A box has a mass of 150 kg. If a net force of 3000 N acts on the box,
what is the box's acceleration
Answer:
See below
Explanation:
F = ma
3000 N = 150 kg * a a = 20 m/s^2
Help my brain ain’t braining
The arrows are drawn in the figure which shows gravitational forces on each person on earth.
Gravitational force is force of attraction between two masses. Gravitational force(F) between two bodies is directly proportion to the product of masses(m₁,m₂) of two bodies and inversely proportional to square of distance(r) between them. mathematically it is written as,
F∝ m₁.m₂
F ∝ 1/r²
F = G m₁,m₂÷r²
where G is gravitational constant, whose value is 6.6743 × 10⁻¹¹ m³ kg-1s⁻².
Force is expressed in Newton N in SI unit. its dimensions are [M¹L¹T⁻²].
This is analogous with coulomb's law which gives force between two charges.
To know more about force :
https://brainly.com/question/13191643
#SPJ1.
What are two important factors to consider when describing the effect of an applied force on an object’s motion
The magnitude of the applied force and the mass of the object, together determine how an object's motion will change in response to the applied force.
When describing the effect of an applied force on an object's motion, two important factors to consider are:
Magnitude of the Force: The magnitude or strength of the applied force determines the amount of acceleration or deceleration experienced by the object. According to Newton's second law of motion, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. A greater force will result in a greater acceleration, while a smaller force will result in a smaller acceleration. Additionally, the direction of the force relative to the object's initial motion will determine if it speeds up, slows down, or changes direction.
Mass of the Object: The mass of the object being acted upon is another crucial factor. As mentioned earlier, according to Newton's second law, the acceleration of an object is inversely proportional to its mass. This means that for a given force, an object with a larger mass will experience a smaller acceleration compared to an object with a smaller mass. In simpler terms, it requires more force to accelerate a heavier object compared to a lighter object.
These two factors, the magnitude of the applied force and the mass of the object, together determine how an object's motion will change in response to the applied force.
For more such questions on Force
https://brainly.com/question/30015989
#SPJ11
How much impulse is imparted on a 0.14 kg baseball initially traveling at 32 m/s when it is struck by a baseball bat and begins to travel in the opposite direction at 49 m/s
ANSWER AND EXPLAINATION:
To calculate the impulse imparted on the baseball, we can use the impulse-momentum principle, which states that the impulse experienced by an object is equal to the change in momentum of the object. Mathematically, it can be expressed as:
Impulse = Change in momentum
The momentum of an object is given by the product of its mass and velocity:
Momentum = mass × velocity
In this case, the baseball has an initial mass of 0.14 kg and an initial velocity of 32 m/s. After being struck by the bat, it travels in the opposite direction at a velocity of 49 m/s.
Therefore, the change in momentum is given by:
Change in momentum = (mass × final velocity) - (mass × initial velocity)
Change in momentum = mass × (final velocity - initial velocity)
Change in momentum = 0.14 kg × (49 m/s - (-32 m/s))
Change in momentum = 0.14 kg × (49 m/s + 32 m/s)
Change in momentum = 0.14 kg × 81 m/s
Change in momentum = 11.34 kg·m/s
So, the impulse imparted on the baseball is 11.34 kg·m/s.
Jim and Sally both do identical jobs. Jim works quickly while Sally works slowly. Which of the following is true?
A) Sally uses more energy.
B) Jim uses more energy.
C) Jim uses more power.
D) Sally uses more power.
help i am having a mental breakdown help! need this done...
*graph is below* help
1. What is Peter’s total distance traveled? What is Peter's displacement?
2. Is there a time when Peter is not moving? If so, when?
can anyone write for me all the equation of linear motion
All the equations of motion are as follows, Displacement (s) equation, Final velocity (v) equation, Average velocity (v_avg) equation, Displacement (s) equation with average velocity, and Displacement (s) equation.
Equations of MotionIn terms of its motion as a function of time, equations of motion define how a physical system behaves. In more detail, the equations of motion define how a physical system behaves as a collection of mathematical functions expressed in terms of dynamic variables.
s = ut + (1/2)at^2v = u + atv_avg = (u + v) / 2s = v_avg * ts = (u + v) / 2 * tv^2 = u^2 + 2asIn conclusion, equations of motion define how a physical system behaves in terms of how its motion changes over time.
Learn more about Equations of Motion here:
https://brainly.com/question/25951773
#SPJ1
A 23900N/C electric field points down. What is the value of a charge placed in the field if it experiences a force of 7520N up?
Answer:
0.315C
Explanation:
Force/Electric field
7520N/23900C
what are complementary angles and supplementary angles difference between them
Answer:
Complementary Angles and Supplementary Angles: Differences and Definitions
Complementary angles and supplementary angles are two common types of angles in geometry. Although they are related concepts, they have different definitions and properties. Here is a brief explanation of the differences between complementary angles and supplementary angles:
Complementary Angles:
Complementary angles are two angles whose sum is equal to 90 degrees. In other words, when two angles are complementary, they add up to a right angle. Complementary angles are denoted as "∠A" and "∠B", where ∠A + ∠B = 90°.
For example, if one angle measures 30 degrees, the complementary angle would measure 60 degrees, since 30 + 60 = 90. Another example of complementary angles would be 45 degrees and 45 degrees, since 45 + 45 = 90.
Supplementary Angles:
Supplementary angles are two angles whose sum is equal to 180 degrees. In other words, when two angles are supplementary, they add up to a straight angle. Supplementary angles are denoted as "∠C" and "∠D", where ∠C + ∠D = 180°.
For example, if one angle measures 60 degrees, the supplementary angle would measure 120 degrees, since 60 + 120 = 180. Another example of supplementary angles would be 90 degrees and 90 degrees, since 90 + 90 = 180.
Differences:
The main difference between complementary angles and supplementary angles is the sum of their measures. Complementary angles add up to 90 degrees, while supplementary angles add up to 180 degrees. Another difference is the types of angles that they form. Complementary angles form a right angle, while supplementary angles form a straight angle.
In conclusion, complementary angles and supplementary angles are two common types of angles in geometry. Complementary angles add up to a right angle of 90 degrees, while supplementary angles add up to a straight angle of 180 degrees. Understanding the differences between these types of angles is essential for solving problems in geometry and trigonometry.
Explanation:
Answer:
complementary angles start from 90 degree and supplementary start after 180 degree
What is an air pollution analyst ( Please write it in your own words )
Please answer this for 15 points please don’t put in a link.
Answer:
c. Double Replacement
Explanation:
As in Double Replacement reaction exchanges the cations (or the anions) of two ionic compounds.
Here, in BaCl2 , Ba has replaced with NO3 to form Ba(NO3)2
and in 2AgNo3 , Ag has replaced with Cl to form 2AgCl.
A 750 kg race car accelerates to the right. The engine applies a force of
+7000 N to the car. The total friction on the car in the opposite
direction is -200 N.
Find the net force on the car then use 'Fnet = m a' to find the
acceleration.
O a
b
Oc
Od
12.4 m/s2
10.5 m/s2
8.0 m/s2
9.1 m/s2
what is the physics behind why electric parallel plates move from positive to negative
The physics behind the movement of electric charges between parallel plates is based on the principles of electrostatics. Electric charges are either positive or negative, and they are affected by electric fields.
Electric fields are created by a difference in electric potential, which is measured in volts. When a voltage is applied to a set of parallel plates, the charges within the plates will be affected by the electric field, and will move in response to it.
What are electric parallel plates?When a voltage is applied to a set of parallel plates, the positive charges in the plate connected to the positive voltage will be attracted to the negative voltage, while the negative charges in the plate connected to the negative voltage will be attracted to the positive voltage.
The movement of charges between the plates is also affected by the presence of any obstacles or resistances in the electric field, such as resistance in the wire. This can slow down the movement of charges and result in a decrease in the current flowing through the circuit.
In all, the movement of charges between electric parallel plates is the result of the electric field created by a difference in electric potential, and the movement of charges is called drift velocity. The movement is also affected by the presence of resistance.
Learn more about electric parallel plates from
https://brainly.com/question/28529259
#SPJ1
22. How is total current calculated in a series circuit?
The radius of curvature is smaller at the top than on the sides so that the downward centripetal acceleration at the top will be greater than the acceleration due to gravity, keeping the passengers pressed firmly into their seats. What is (a) the speed of the roller coaster at the top of the loop (in m/s) if the radius of curvature there is 13.0 m and the downward acceleration of the car is 1.50 g, and (b) the minimum speed necessary for the coaster to complete the loop without falling off the track?
the answer for the speed of the roller coaster at the top of the loop is v = 14.8 m/s
the minimum speed necessary for the coaster to complete the loop without falling off the track is 11.3 m/s.
Explanation to the Roller Coaster Speed Calculation(a) To find the speed of the roller coaster at the top of the loop, we can use the equation for centripetal acceleration: a = v^2/r. We know that the radius of curvature is 13.0 m and the downward acceleration of the car is 1.50 g (where g is the acceleration due to gravity, approximately 9.8 m/s^2).
So, we can rearrange the equation to solve for v: v = sqrt(ar)
Plugging in the values, we get: v = sqrt(1.5g * 13m)
v = sqrt(22.5 * 9.8)
v = sqrt(219.5)
v = 14.8 m/s
(b) To find the minimum speed necessary for the coaster to complete the loop without falling off the track, we can use the same equation for centripetal acceleration, but this time we will use the minimum value of a that will keep the car on the track, which is equal to the acceleration due to gravity (g).
So, we can rearrange the equation to solve for v: v = sqrt(ar)
Plugging in the values, we get: v = sqrt(g * 13m)
v = sqrt(9.8 * 13m)
v = sqrt(127.4)
v = 11.3 m/s
So the minimum speed necessary for the coaster to complete the loop without falling off the track is 11.3 m/s.
Learn more on centripetal force here https://brainly.com/question/20905151
#SPJ1
what is the full distance when an object is thrown at 35 m/s at an angle of 45 degrees
Okay, here are the steps to calculate the full distance traveled when an object is thrown at a certain speed and angle:
You have the initial velocity (v): 35 m/s
You have the launch angle (θ): 45 degrees
We need to split the initial velocity into its horizontal (vx) and vertical (vy) components.
To calculate vx (horizontal component):
vx = v * cosθ
vx = 35 * cos(45) = 24.7 m/s
To calculate vy (vertical component):
vy = v * sinθ
vy = 35 * sin(45) = 24.7 m/s
We can calculate the horizontal distance (d) traveled using:
d = vx * t (where t is time)
Since there is no air resistance, the vertical velocity (vy) will remain constant. This means the time the object is in the air is:
t = vy / g (where g is acceleration due to gravity, 9.8 m/s^2)
t = 24.7 / 9.8 = 2.52 seconds
Now we can calculate the full horizontal distance traveled:
d = vx * t
d = 24.7 * 2.52
= 62.3 meters
So the full distance the object will travel when thrown at 35 m/s at a 45 degree angle is approximately 62 meters.
Let me know if you have any other questions!
Answer:
To calculate the full distance traveled by an object thrown at a velocity of 35 m/s at an angle of 45 degrees, we need to consider the horizontal and vertical components of the motion separately.
The horizontal component of the motion remains constant throughout the trajectory and is given by:
Horizontal distance = (Initial velocity) * (Time of flight) * cos(angle)
In this case, the initial velocity is 35 m/s, the angle is 45 degrees, and we need to find the time of flight.
The time of flight can be calculated using the vertical component of the motion. The vertical motion can be described using the equation:
Vertical displacement = (Initial velocity * sin(angle))^2 / (2 * acceleration)
Where the initial velocity is 35 m/s, the angle is 45 degrees, and the acceleration is the acceleration due to gravity, approximately 9.8 m/s^2.
The vertical displacement is zero at the highest point of the trajectory since the object comes back down to the same height it was launched from. So we can solve the equation for the time of flight.
Using these calculations, we can find the horizontal distance traveled by the object.
Let's calculate step by step:
Step 1: Calculate the time of flight
Vertical displacement = 0 (at the highest point)
0 = (35 * sin(45))^2 / (2 * 9.8)
0 = (24.75^2) / 19.6
0 = 616.0125 / 19.6
0 = 31.43
Step 2: Calculate the time of flight
Vertical displacement = (Initial velocity * sin(angle)) * time - (1/2) * acceleration * time^2
0 = (35 * sin(45)) * time - (1/2) * 9.8 * time^2
0 = 24.75 * time - 4.9 * time^2
4.9 * time^2 - 24.75 * time = 0
time * (4.9 * time - 24.75) = 0
time = 0 (initial point) or 24.75 / 4.9
time = 5.05 seconds
Step 3: Calculate the horizontal distance
Horizontal distance = (Initial velocity) * (Time of flight) * cos(angle)
Horizontal distance = 35 * 5.05 * cos(45)
Horizontal distance = 35 * 5.05 * (sqrt(2)/2)
Horizontal distance = 88.96 meters
Therefore, when an object is thrown at 35 m/s at an angle of 45 degrees, the full distance traveled is approximately 88.96 meters.a stationary 165 kg football player is tackled by a 178 kg player running at 8 m/s. How fast are they moving after the collision ?
After the impact, the two players are moving side by side at a speed of roughly 4.12 m/s.
Does the principle of conservation of momentum is constant inside a certain problem domain?Momentum is never created or destroyed inside a problem domain, according to the principle of momentum conservation. Momentum is only changed by the action of forces as they are described by Newton's equations of motion.
\(p1 = m1 * v1 + m2 * v2\)
\(p1 = 165 kg * 0 m/s + 178 kg * 8 m/s = 1424 kg*m/s\)
\(p2 = (m1 + m2) * v\)
Substituting the values, we get:
\(p2 = (165 kg + 178 kg) * v = 343 kg * v\)
Since the total momentum is conserved, we can equate p1 and p2:
p1 = p2
\(165 kg * 0 m/s + 178 kg * 8 m/s = 343 kg * v\)
\(v = (165 kg * 0 m/s + 178 kg * 8 m/s) / 343 kg ≈ 4.12 m/s\)
To know more about speed visit:-
https://brainly.com/question/28224010
#SPJ1
A(n) ____________________ is a dynamic variable on the free store without any pointer pointing to it.
A inaccessible object is a dynamic variable on the free store without any pointer pointing to it.
How to find the height of an inaccessible object using sextant?Utilize the sextant's arc to determine the angle. By dividing the object's distance from the point of observation by the tan of the angle you calculated, you may use a scientific calculator to get the object's height.
How can heights and distances that are absent or unavailable be measured?The measuring of heights and distances that are unreachable is made easier by right-triangle trigonometry. By drawing a right triangle with the unknown height or distance as one of its sides and a known side and angle on the other, it is possible to determine the unknown height or distance.
To know more about inaccessible object visit:
https://brainly.com/question/21989844
#SPJ4
Answer:
dynamic variable
A 10.0kg of desk initial is pushed along a frictionless surface by a constant horizontal of force magnitude 12N Find the speed of the desk after it has moved through a horizontal distance of 5.0m
kylydljty many true dvx*&;'*+$_5+
What is MOST likely to be TRUE about asynchronous communication?
It is rarely used in businesses in today's society.
It offers many opportunities to ask clarifying questions in real time.
It is helpful when employees work across multiple time zones.
It only works when all employees work in the same time zone.
The most likely true statement about asynchronous communication is that it is helpful when employees work across multiple time zones.
Asynchronous communication refers to a mode of communication where participants do not need to be present or engaged simultaneously. Instead, they can send and receive messages at their convenience.In today's globalized society, businesses often have teams distributed across different geographical locations and time zones. Asynchronous communication becomes invaluable in such scenarios as it allows team members to collaborate effectively without the constraints of real-time interactions. By utilizing tools like email, project management platforms, or messaging apps, individuals can communicate and exchange information regardless of their location or the time differences.
Asynchronous communication also offers benefits such as flexibility and increased productivity. Team members have the freedom to work at their own pace and prioritize tasks accordingly. It provides opportunities for thoughtful and well-crafted responses, as individuals can take time to gather information or reflect on complex matters before replying.While asynchronous communication is advantageous for teams operating across multiple time zones, it does not rely on all employees working in the same time zone. In fact, it is designed to accommodate diverse schedules and allow individuals to collaborate efficiently despite their varying work hours.
for such more questions on time
https://brainly.com/question/4931057
#SPJ8
The picture shows two solutions of salt water. Which solution is more concentrated (has a higher concentration)?
Question 15 options:
The first solution is more concentrated
The second solution is more concentrated
The solutions have the same concentration.
In order to determine which of the two solutions of salt water is more concentrated, we need to first understand what concentration means and how it is measured. Concentration refers to the amount of solute dissolved in a given amount of solvent. It is typically measured in units of mass per volume, such as grams per liter (g/L) or milligrams per milliliter (mg/mL). so The second solution is more concentrated
When comparing the concentration of two solutions, the one with a higher concentration has more solute dissolved in the same amount of solvent. Therefore, in the picture provided, we can determine which solution is more concentrated by looking at the relative amounts of solute in each solution.If the solutions have the same concentration, then they must have the same amount of solute dissolved in the same amount of solvent. From the picture, we can see that both solutions are in the same size container and have the same amount of solvent (water) in them. Therefore, we can conclude that they have the same concentration of salt.The amount of solute dissolved in a solution can be increased by either adding more solute or by reducing the amount of solvent. If we were to add more salt to one of the solutions, we would increase the concentration of that solution. Alternatively, if we were to evaporate some of the water from one of the solutions, we would reduce the amount of solvent and increase the concentration of that solution.
For more question concentrated
https://brainly.com/question/26288031
#SPJ8
What is the speed of a bobsled whose distance time graph indicates that it traveled 125m in 15s?
In order to calculate the speed, we can use the formula below:
\(speed=\frac{distance}{time}\)Now, using the distance traveled of 125 meters in the interval of time of 15 seconds, the speed is:
\(\begin{gathered} speed=\frac{125}{15}\\ \\ speed=8.33\text{ m/s} \end{gathered}\)Therefore the speed is 8.33 m/s.
A block of mass m is supported by two identical parallel vertical springs, each with spring stiffness constant k. What will be the frequency of vibration? The answer is not a number, but an equation.
f=*****
The frequency of vibration of the block supported by two identical parallel vertical springs with spring stiffness constant k and mass m is \((1 / 2\pi) * \sqrt(2k / m).\)
What does physics mean by vibrational frequency?In physics, frequency is the number of waves that pass a fixed point in a unit of time as well as the number of cycles or vibrations that a body in periodic motion experiences in a unit of time.
The frequency of vibration of a mass-spring system is given by the formua:
\(f = (1 / 2\pi) * \sqrt(k / m)\)
where f is the frequency of vibration, k is the spring constant, and m is the mass of the object.
In this case, the block is supported by two identical parallel vertical springs, each with spring stiffness constant k. So, the effective spring constant is the sum of the individual spring constants:
k_eff = 2k
The mass of the block is given as m.
So, the frequency of vibration of the block supported by two identical parallel vertical springs can be calculated as:
\(f = (1 / 2\pi) * \sqrt(k_eff / m) = (1 / 2\pi) * \sqrt((2k) / m)\\f = (1 / 2\pi) * \sqrt(2k / m)\)
To know more about frequency visit:-
brainly.com/question/30783512
#SPJ1
What is a young lady in a binkini I pictures help me understand the must :)
Uhhh.. creep. Can you like..not?
Answer: Lol what the heck I never heard this type of question. but I mean you see it when you go to the beach so yeah that's all I'm telling you U-U